Abstract
Ao realizar o processamento do áudio espacial de cenas sonoras, costuma ser necessário detectar primeiro as fontes sonoras presentes na cena, o que é comumente feito com o auxílio de um arranjo de microfones e um algoritmo detector de direção de chegada (DOA). Caso o sistema deva analisar o som vindo de todas as direções possíveis, então deve-se utilizar um arranjo esférico de microfones. Algoritmos clássicos de estimação de DOA, como a decomposição em ondas planas e o beamforming esférico, apresentam baixa precisão para localizar fontes. Para melhorar a estimação da DOA, o algoritmo compressive beamforming (CB) foi proposto. O CB aplica a regularização promotora de esparsidade ao beamforming regular através do uso da minimização da norma L1 assumindo, portanto, que cenas sonoras normalmente são compostas por apenas algumas fontes. Neste artigo, é comparada a performance de três algoritmos de regularização promotora de esparsidade em um modelo de decomposição em ondas planas: a minimização da norma L1 via Disciplined Convex Program (DCP), o método Least Absolute Shrinkage and Selection Operator (LASSO) e o Orthogonal Matching Pursuit (OMP).Verifica-se que os três algoritmos foram capazes de determinar acuradamente o número de fontes e suas direções para uma cena simulada, tanto com quanto sem ruído aditivo. A performance de todos algoritmos degradou quando aplicados a uma situação real com uma fonte gravada em ambiente anecoico. Neste caso, houve uma melhora da performance ao se combinar o LASSO para determinar o número de fontes com o OMP para refinar a estimativa da amplitude da onda.
Publisher
Sociedade Brasileira de Acustica
Reference31 articles.
1. BENESTY, J.; CHEN, J.; HUANG, Y. Microphone Array Signal Processing. [S.l.]: Springer Berlin Heidelberg, 2008. (Springer Topics in Signal Processing). doi: 10.1007/978-3-540-78612-2. ISBN 978-3540786122.
2. NASCIMENTO, Vítor H.; MASIERO, Bruno S.; RIBEIRO, Flávio P. Acoustic imaging using the Kronecker array transform. In: COELHO, Rosangela Fernandes; NASCIMENTO, Vitor Heloiz; QUEIROZ, Ricardo Lopes de; ROMANO, Joao Marcos Travassos; CAVALCANTE, Charles Casimiro (Ed.). Signals and Images: Advances and Results in Speech, Estimation, Compression, Recognition, Filtering, and Processing. [S.l.]: CRC Press, 2015. p. 153–178. ISBN 978-1498722360.
3. HÖGBOM, J. A. Aperture synthesis with a non-regular distribution of interferometer baselines. Astronomy and Astrophysics Supplement, v. 15, p. 417–426, 1974. ISSN 0365-0138. Disponível em: https://ui.adsabs.harvard.edu/abs/1974A%26AS...15..417H/.
4. WANG, Yanwei; LI, Jian; STOICA, Petre; SHEPLAK, Mark; NISHIDA, Toshikazu. Wide-band relax and wideband clean for aeroacoustic imaging. The Journal of the Acoustical Society of America, v. 115, n. 2, p. 757–767, 2004. doi: 10.1121/1.1639906.
5. DOUGHERTY, Robert P. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. In: 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference). [S.l.: s.n.], 2005. p. 1–13. ISBN 156-3477300. ISSN 0146-3705. doi: 10.2514/6.2005-2961.