Dynamic Risk Prediction of Treatment Discontinuation Using Patient-Reported Outcomes Data in the Phase III NSABP B-35 Trial

Author:

Calsavara Vinicius F.1ORCID,Henry Norah L.2ORCID,Hays Ron D.3ORCID,Kim Sungjin1ORCID,Luu Michael1ORCID,Diniz Márcio A.1ORCID,Gresham Gillian1ORCID,Cecchini Reena S.4ORCID,Yothers Greg4ORCID,Ganz Patricia A.5ORCID,Rogatko André1ORCID,Tighiouart Mourad1ORCID

Affiliation:

1. 1Cedars-Sinai Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California.

2. 2University of Michigan Rogel Cancer Center, Ann Arbor, Michigan.

3. 3University of California Los Angeles, Department of Medicine, Los Angeles, California.

4. 4University of Pittsburgh, Pittsburgh, Pennsylvania.

5. 5University of California Los Angeles Jonsson Comprehensive Cancer Center, Los Angeles, California.

Abstract

Abstract Predicting an individual's risk of treatment discontinuation is critical for the implementation of precision chemoprevention. We developed partly conditional survival models to predict discontinuation of tamoxifen or anastrozole using patient-reported outcome (PRO) data from postmenopausal women with ductal carcinoma in situ enrolled in the NSABP B-35 clinical trial. In a secondary analysis of the NSABP B-35 clinical trial PRO data, we proposed two models for treatment discontinuation within each treatment arm (anastrozole or tamoxifen treated patients) using partly conditional Cox-type models with time-dependent covariates. A 70/30 split of the sample was used for the training and validation datasets. The predictive performance of the models was evaluated using calibration and discrimination measures based on the Brier score and AUC from time-dependent ROC curves. The predictive models stratified high-risk versus low-risk early discontinuation at a 6-month horizon. For anastrozole-treated patients, predictive factors included baseline body mass index (BMI) and longitudinal patient-reported symptoms such as insomnia, joint pain, hot flashes, headaches, gynecologic symptoms, and vaginal discharge, all collected up to 12 months [Brier score, 0.039; AUC, 0.76; 95% confidence interval (CI), 0.57–0.95]. As for tamoxifen-treated patients, predictive factors included baseline BMI, and time-dependent covariates: cognitive problems, feelings of happiness, calmness, weight problems, and pain (Brier score, 0.032; AUC, 0.78; 95% CI, 0.65–0.91). A real-time calculator based on these models was developed in Shiny to create a web-based application with a future goal to aid healthcare professionals in decision-making. Prevention Relevance: The dynamic prediction provided by partly conditional models offers valuable insights into the treatment discontinuation risks using PRO data collected over time from clinical trial participants. This tool may benefit healthcare professionals in identifying patients at high risk of premature treatment discontinuation and support interventions to prevent potential discontinuation.

Funder

National Cancer Institute

Clinical and Translational Science Institute, University of California, Los Angeles

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3