Plasma Metabolomics Analysis of Aspirin Treatment and Risk of Colorectal Adenomas

Author:

Barry Elizabeth L.1ORCID,Fedirko Veronika23ORCID,Jin Yutong4ORCID,Liu Ken5ORCID,Mott Leila A.1ORCID,Peacock Janet L.1ORCID,Passarelli Michael N.1ORCID,Baron John A.16ORCID,Jones Dean P.5ORCID

Affiliation:

1. 1Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.

2. 2Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas.

3. 3Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.

4. 4Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia.

5. 5Department of Medicine, Emory University, Atlanta, Georgia.

6. 6Department of Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina.

Abstract

Abstract Despite substantial observational and experimental evidence that aspirin use can provide protection against the development of colorectal neoplasia, our understanding of the molecular mechanisms involved is inadequate and limits our ability to use this drug effectively and safely for chemoprevention. We employed an untargeted plasma metabolomics approach using liquid chromatography with high-resolution mass spectroscopy to explore novel metabolites that may contribute to the chemopreventive effects of aspirin. Associations between levels of metabolic features in plasma and aspirin treatment were investigated among 523 participants in a randomized placebo-controlled clinical trial of two doses of aspirin (81 or 325 mg/day) and were linked to risk of colorectal adenoma occurrence over 3 years of follow-up. Metabolic pathways that were altered with aspirin treatment included linoleate and glycerophospholipid metabolism for the 81-mg dose and carnitine shuttle for both doses. Metabolites whose levels increased with 81 mg/day aspirin treatment and were also associated with decreased risk of adenomas during follow-up included certain forms of lysophosphatidylcholine and lysophosphatidylethanolamine as well as trihydroxyoctadecenoic acid, which is a derivative of linoleic acid and is upstream of cyclooxygenase inhibition by aspirin in the linoleate and arachidonic acid metabolism pathways. In conclusion, our findings regarding lysophospholipids and metabolites in the linoleate metabolism pathway may provide novel insights into the chemopreventive effects of aspirin in the colorectum, although they should be considered hypothesis-generating at this time. Prevention Relevance: This research used metabolomics, an innovative discovery-based approach, to identify molecular changes in human blood that may help to explain how aspirin use reduces the risk of colorectal neoplasia in some individuals. Ultimately, this work could have important implications for optimizing aspirin use in the prevention of colorectal cancer.

Funder

NIH

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3