Diphtheria toxin-murine granulocyte-macrophage colony-stimulating factor–induced hepatotoxicity is mediated by Kupffer cells

Author:

Westcott Marlena M.1,Abi-Habib Ralph J.2,Cohen Kimberley A.1,Willingham Mark C.3,Liu Shihui4,Bugge Thomas H.5,Leppla Stephen H.4,Frankel Arthur E.1

Affiliation:

1. 1Internal Medicine, Departments of

2. 2Biochemistry and

3. 3Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina;

4. 4Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases; and

5. 5Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland

Abstract

Abstract DT388GMCSF, a fusion toxin composed of the NH2-terminal region of diphtheria toxin (DT) fused to human granulocyte-macrophage colony-stimulating factor (GMCSF) has shown efficacy in the treatment of acute myeloid leukemia. However, the primary dose-limiting side effect is liver toxicity. We have reproduced liver toxicity in rats using the rodent cell-tropic DT-murine GMCSF (DT390mGMCSF). Serum aspartate aminotransferase and alanine aminotransferase were elevated 15- and 4-fold, respectively, in DT390mGMCSF-treated rats relative to controls. Histologic analysis revealed hepatocyte swelling; however, this did not lead to hepatic necrosis or overt histopathologic changes in the liver. Immunohistochemical staining showed apoptotic cells in the sinusoids, and depletion of cells expressing the monocyte/macrophage markers, ED1 and ED2, indicating that Kupffer cells (KC) are targets of DT390mGMCSF. In contrast, sinusoidal endothelial cells seemed intact. In vitro, DT390mGMCSF was directly cytotoxic to primary KC but not hepatocytes. Two related fusion toxins, DT388GMCSF, which targets the human GMCSF receptor, and DT390mIL-3, which targets the rodent IL-3 receptor, induced a less than 2-fold elevation in serum transaminases and did not deplete KC in vivo. In addition, DTU2mGMCSF, a modified form of DT390mGMCSF with enhanced tumor cell specificity, was not hepatotoxic and was significantly less toxic to KC in vivo and in vitro. These results show that DT390mGMCSF causes liver toxicity by targeting KC, and establish a model for studying how this leads to hepatocyte injury. Furthermore, alternative fusion toxins with potentially reduced hepatotoxicity are presented.

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3