Multiomic-Based Molecular Landscape of FaDu Xenograft Tumors in Mice after a Combinatorial Treatment with Radiation and an HSP90 Inhibitor Identifies Adaptation-Induced Targets of Resistance and Therapeutic Intervention

Author:

Bylicky Michelle A.1ORCID,Shankavaram Uma1ORCID,Aryankalayil Molykutty J.1ORCID,Chopra Sunita1ORCID,Naz Sarwat2ORCID,Sowers Anastasia L.2ORCID,Choudhuri Rajani2ORCID,Calvert Valerie3ORCID,Petricoin Emanuel F.3ORCID,Eke Iris4ORCID,Mitchell James B.2ORCID,Coleman C. Norman15ORCID

Affiliation:

1. 1Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.

2. 2Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, Maryland.

3. 3Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia.

4. 4Department of Radiation Oncology, Stanford University Medical School, Stanford, California.

5. 5Radiation Research Program, National Cancer Institute, NIH, Rockville, Maryland.

Abstract

Abstract Treatments involving radiation and chemotherapy alone or in combination have improved patient survival and quality of life. However, cancers frequently evade these therapies due to adaptation and tumor evolution. Given the complexity of predicting response based solely on the initial genetic profile of a patient, a predetermined treatment course may miss critical adaptation that can cause resistance or induce new targets for drug and immunotherapy. To address the timescale for these evasive mechanisms, using a mouse xenograft tumor model, we investigated the rapidity of gene expression (mRNA), molecular pathway, and phosphoproteome changes after radiation, an HSP90 inhibitor, or combination. Animals received radiation, drug, or combination treatment for 1 or 2 weeks and were then euthanized along with a time-matched untreated group for comparison. Changes in gene expression occur as early as 1 week after treatment initiation. Apoptosis and cell death pathways were activated in irradiated tumor samples. For the HSP90 inhibitor and combination treatment at weeks 1 and 2 compared with Control Day 1, gene-expression changes induced inhibition of pathways including invasion of cells, vasculogenesis, and viral infection among others. The combination group included both drug-alone and radiation-alone changes. Our data demonstrate the rapidity of gene expression and functional pathway changes in the evolving tumor as it responds to treatment. Discovering these phenotypic adaptations may help elucidate the challenges in using sustained treatment regimens and could also define evolving targets for therapeutic efficacy.

Funder

NIH intramural research program

Publisher

American Association for Cancer Research (AACR)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3