Brentuximab Vedotin–Driven Microtubule Disruption Results in Endoplasmic Reticulum Stress Leading to Immunogenic Cell Death and Antitumor Immunity

Author:

Heiser Ryan A.1ORCID,Cao Anthony T.1ORCID,Zeng Weiping1ORCID,Ulrich Michelle1ORCID,Younan Patrick1ORCID,Anderson Martha E.1ORCID,Trueblood Esther S.1ORCID,Jonas Mechthild1ORCID,Thurman Robert1ORCID,Law Che-Leung1ORCID,Gardai Shyra J.1ORCID

Affiliation:

1. 1Seagen Inc., Bothell, Washington.

Abstract

Abstract Brentuximab vedotin, a CD30-directed antibody–drug conjugate (ADC), is approved for clinical use in multiple CD30-expressing lymphomas. The cytotoxic payload component of brentuximab vedotin is monomethyl auristatin E (MMAE), a highly potent microtubule-disrupting agent. Preclinical results provided here demonstrate that treatment of cancer cells with brentuximab vedotin or free MMAE leads to a catastrophic disruption of the microtubule network eliciting a robust endoplasmic reticulum (ER) stress response that culminates in the induction of the classic hallmarks of immunogenic cell death (ICD). In accordance with the induction of ICD, brentuximab vedotin–killed lymphoma cells drove innate immune cell activation in vitro and in vivo. In the “gold-standard” test of ICD, vaccination of mice with brentuximab vedotin or free MMAE-killed tumor cells protected animals from tumor rechallenge; in addition, T cells transferred from previously vaccinated animals slowed tumor growth in immunodeficient mice. Immunity acquired from killed tumor cell vaccination was further amplified by the addition of PD-1 blockade. In a humanized model of CD30+ B-cell tumors, treatment with brentuximab vedotin drove the expansion and recruitment of autologous Epstein-Barr virus–reactive CD8+ T cells potentiating the activity of anti–PD-1 therapy. Together, these data support the ability of brentuximab vedotin and MMAE to drive ICD in tumor cells resulting in the activation of antigen-presenting cells and augmented T-cell immunity. These data provide a strong rationale for the clinical combination of brentuximab vedotin and other MMAE-based ADCs with checkpoint inhibitors.

Funder

Seagen

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3