Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy

Author:

Gouazé Valerie1,Yu Jing Y.1,Bleicher Richard J.2,Han Tie-Yan1,Liu Yong-Yu1,Wang Hongtao1,Gottesman Michael M.3,Bitterman Arie4,Giuliano Armando E.1,Cabot Myles C.1

Affiliation:

1. 1John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, California;

2. 4Department of Surgery, Palo Alto Medical Foundation, Palo Alto, California

3. 2Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, Maryland;

4. 3Department of Surgery A, Carmel Medical Center, Haifa, Israel; and

Abstract

Abstract Resistance to natural product chemotherapy drugs is a major obstacle to successful cancer treatment. This type of resistance is often acquired in response to drug exposure; however, the mechanisms of this adverse reaction are complex and elusive. Here, we have studied acquired resistance to Adriamycin, Vinca alkaloids, and etoposide in MCF-7 breast cancer cells, KB-3-1 epidermoid carcinoma cells, and other cancer cell lines to determine if there is an association between expression of glucosylceramide synthase, the enzyme catalyzing ceramide glycosylation to glucosylceramide, and the multidrug-resistant (MDR) phenotype. This work shows that glucosylceramide levels increase concomitantly with increased drug resistance in the KB-3-1 vinblastine-resistant sublines KB-V.01, KB-V.1, and KB-V1 (listed in order of increasing MDR). The levels of glucosylceramide synthase mRNA, glucosylceramide synthase protein, and P-glycoprotein (P-gp) also increased in parallel. Increased glucosylceramide levels were also present in Adriamycin-resistant KB-3-1 sublines KB-A.05 and KB-A1. In breast cancer, detailed analysis of MCF-7 wild-type and MCF-7-AdrR cells (Adriamycin-resistant) demonstrated enhanced glucosylceramide synthase message and protein, P-gp message and protein, and high levels of glucosylceramide in resistant cells. Similar results were seen in vincristine-resistant leukemia, etoposide-resistant melanoma, and Adriamycin-resistant colon cancer cell lines. Cell-free glucosylceramide synthase activity was higher in lysates obtained from drug-resistant cells. Lastly, glucosylceramide synthase promoter activity was 15-fold higher in MCF-7-AdrR compared with MCF-7 cells. We conclude that selection pressure for resistance to natural product chemotherapy drugs selects for enhanced ceramide metabolism through glucosylceramide synthase in addition to enhanced P-gp expression. A possible connection between glucosylceramide synthase and P-gp in drug resistance biology is suggested.

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3