89Zr-ImmunoPET Shows Therapeutic Efficacy of Anti-CD20-IFNα Fusion Protein in a Murine B-cell Lymphoma Model

Author:

Zettlitz Kirstin A.1ORCID,Salazar Felix B.1,Yamada Reiko E.2ORCID,Trinh K. Ryan3,Vasuthasawat Alex3,Timmerman John M.2,Morrison Sherie L.3,Wu Anna M.1ORCID

Affiliation:

1. 1Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.

2. 2Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.

3. 3Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California.

Abstract

Abstract Antibody-mediated tumor delivery of cytokines can overcome limitations of systemic administration (toxicity, short half-lives). Previous work showed improved antitumor potency of anti-CD20-IFNα fusion proteins in preclinical mouse models of B-cell lymphoma. Although tumor targeting is mediated by the antibody part of the fusion protein, the cytokine component might strongly influence biodistribution and pharmacokinetics, as a result of its affinity, size, valency, and receptor distribution. Here, we used immunoPET to study the in vivo biodistribution and tumor targeting of the anti-CD20 rituximab-murine IFNα1 fusion protein (Rit-mIFNα) and compared it with the parental mAb (rituximab, Rit). Rit-mIFNα and Rit were radiolabeled with zirconium-89 (89Zr, t1/2 78.4 hours) and injected into C3H mice bearing syngeneic B-cell lymphomas (38C13-hCD20). Dynamic [(2 hours post injection (p.i.)] and static (4, 24, and 72 hours) PET scans were acquired. Ex vivo biodistribution was performed after the final scan. Both 89Zr-Rit-mIFNα and 89Zr-Rit specifically target hCD20-expressing B-cell lymphoma in vivo. 89Zr-Rit-mIFNα showed specific uptake in tumors (7.6 ± 1.0 %ID/g at 75 hours p.i.), which was significantly lower than 89Zr-Rit (38.4 ± 9.9 %ID/g, P < 0.0001). ImmunoPET studies also revealed differences in the biodistribution, 89Zr-Rit-mIFNα showed rapid blood clearance and high accumulation in the liver compared with 89Zr-Rit. Importantly, immunoPET clearly revealed a therapeutic effect of the single 89Zr-Rit-mIFNα dose, resulting in smaller tumors and fewer lymph node metastases compared with mice receiving 89Zr-Rit. Mice receiving 89Zr-Rit-mIFNα had enlarged spleens, suggesting that systemic immune activation contributes to therapeutic efficacy in addition to the direct antitumoral activity of IFNα. In conclusion, immunoPET allows the noninvasive tracking and quantification of the antibody-cytokine fusion protein and helps understand the in vivo behavior and therapeutic efficacy.

Funder

NIH

Jaime Erin Follicular Lymphoma Research Consortium

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3