Affiliation:
1. 1Oncology Research,
2. 2Chemical and Screening Sciences, and
3. 3Radiosynthesis Group, Wyeth Research, Pearl River, New York and
4. 4Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
Abstract
Abstract
HTI-286, a synthetic analogue of hemiasterlin, depolymerizes microtubules and is proposed to bind at the Vinca peptide site in tubulin. It has excellent in vivo antitumor activity in human xenograft models, including tumors that express P-glycoprotein, and is in phase II clinical evaluation. To identify potential mechanisms of resistance induced by HTI-286, KB-3-1 epidermoid carcinoma cells were exposed to increasing drug concentrations. When maintained in 4.0 nmol/L HTI-286, cells had 12-fold resistance to HTI-286. Cross-resistance was observed to other Vinca peptide-binding agents, including hemiasterlin A, dolastatin-10, and vinblastine (7- to 28-fold), and DNA-damaging drugs, including Adriamycin and mitoxantrone (16- to 57-fold), but minimal resistance was seen to taxanes, epothilones, or colchicine (1- to 4-fold). Resistance to HTI-286 was retained when KB-HTI-resistant cells were grown in athymic mice. Accumulation of [3H]HTI-286 was lower in cells selected in intermediate (2.5 nmol/L) and high (4.0 nmol/L) concentrations of HTI-286 compared with parental cells, whereas accumulation of [14C]paclitaxel was unchanged. Sodium azide treatment partially reversed low HTI-286 accumulation, suggesting involvement of an ATP-dependent drug pump. KB-HTI-resistant cells did not overexpress P-glycoprotein, breast cancer resistance protein (BCRP/ABCG2/MXR), MRP1, or MRP3. No mutations were found in the major β-tubulin isoform. However, 4.0 nmol/L HTI-286-selected cells had a point mutation in α-tubulin that substitutes Ser for Ala12 near the nonexchangeable GTP-binding site of α-tubulin. KB-HTI-resistant cells removed from drug became less resistant to HTI-286, no longer had low HTI-286 accumulation, and retained the Ala12 mutation. These data suggest that HTI-286 resistance may be partially mediated by mutation of α-tubulin and by an ATP-binding cassette drug pump distinct from P-glycoprotein, ABCG2, MRP1, or MRP3.
Publisher
American Association for Cancer Research (AACR)
Reference38 articles.
1. Nieman JA, Coleman JE, Wallace DJ, et al. Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues. J Nat Prod 2003;66:183–99.
2. Hamel E, Covell DG. Antimitotic peptides and depsipeptides. Curr Med Chem Anti-Canc Agents 2002;2:19–53.
3. Anderson HJ, Coleman JE, Andersen RJ, Roberge M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol 1997;39:223–6.
4. Loganzo F, Discafani CM, Annable T, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 2003;63:1838–45.
5. Krishnamurthy G, Cheng W, Lo MC, et al. Biophysical characterization of the interactions of HTI-286 with tubulin heterodimer and microtubules. Biochemistry 2003;42:13484–95.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献