Antitumor Immune Mechanisms of the Anti-Complement Factor H Antibody GT103

Author:

Bushey Ryan T.1ORCID,Saxena Ruchi2ORCID,Campa Michael J.1ORCID,Gottlin Elizabeth B.1ORCID,He You-Wen2ORCID,Patz Edward F.13ORCID

Affiliation:

1. 1Department of Radiology, Duke University School of Medicine, Durham, North Carolina.

2. 2Department of Immunology, Duke University School of Medicine, Durham, North Carolina.

3. 3Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.

Abstract

Abstract Development of novel therapeutic antibodies that not only kill tumor cells but modulate the adaptive immune response has the potential to produce long term anticancer immunity and a durable clinical response. We previously reported the discovery of anti-complement factor H (CFH) autoantibodies in patients with lung cancer that were associated with early-stage disease and exceptional outcomes. The human mAb GT103, produced from a single CFH autoantibody-expressing B cell of a patient with lung cancer, recognizes a conformationally distinct epitope on tumor cells, kills tumor cells, and inhibits tumor growth in animal studies. Recent experiments have shown that GT103 restructures the tumor microenvironment and initiates a robust antitumoral adaptive immune response. The current study further elucidates several mechanisms by which GT103 kills tumor cells and drives the immune program. Here we show GT103 has specificity for tumor cells without binding to native soluble CFH or normal tissues. GT103 causes complement C3 split product deposition on tumor cells in vitro and in vivo, triggers antibody-dependent cellular phagocytosis, and increases translocation of the danger-associated molecular pattern molecule calreticulin to the plasma membrane. We also demonstrate that GT103 causes B-cell activation in vitro and in vivo, and that GT103 antitumor activity in vivo is B-cell dependent. The complex mechanism of GT103, a tumor-specific antibody that kills tumor cells and stimulates an immune response, supports further development of this human-derived antibody as a novel therapeutic option for patients with lung cancer.

Funder

U.S. Department of Defense

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3