Affiliation:
1. 1Bayer AG, Pharmaceuticals, Berlin, Germany.
2. 2Bayer AS, Thorium Conjugate Research, Oslo, Norway.
3. 3Minerva Imaging ApS, Oelstykke, Denmark.
Abstract
Abstract
Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs. Here, based on the previous encouraging findings with monotherapy, we investigated the efficacy of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) both as monotherapy and in combination with chemotherapies and antiangiogenic compounds in ovarian and cervical cancer models expressing p-gp. MSLN-TTC monotherapy showed equal cytotoxicity in vitro in p-gp–positive and -negative cancer cells, while chemotherapeutics dramatically lost activity on p-gp–positive cancer cells. In vivo, MSLN-TTC exhibited dose-dependent tumor growth inhibition with treatment/control ratios of 0.03–0.44 in various xenograft models irrespective of p-gp expression status. Furthermore, MSLN-TTC was more efficacious in p-gp–expressing tumors than chemotherapeutics. In the MSLN-expressing ST206B ovarian cancer patient-derived xenograft model, MSLN-TTC accumulated specifically in the tumor, which combined with pegylated liposomal doxorubicin (Doxil), docetaxel, bevacizumab, or regorafenib treatment induced additive-to-synergistic antitumor efficacy and substantially increased response rates compared with respective monotherapies. The combination treatments were well tolerated and only transient decreases in white and red blood cells were observed. In summary, we demonstrate that MSLN-TTC treatment shows efficacy in p-gp–expressing models of chemoresistance and has combination potential with chemo- and antiangiogenic therapies.
Publisher
American Association for Cancer Research (AACR)