Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents

Author:

Gourdeau Henriette1,Leblond Lorraine1,Hamelin Bettina1,Desputeau Clemence1,Dong Kelly1,Kianicka Irenej1,Custeau Dominique1,Boudreau Chantal1,Geerts Lilianne1,Cai Sui-Xiong2,Drewe John2,Labrecque Denis1,Kasibhatla Shailaja2,Tseng Ben2

Affiliation:

1. 1Shire BioChem, Inc., Laval, Quebec, Canada and

2. 2Maxim Pharmaceuticals, Inc., San Diego, California

Abstract

Abstract A novel series of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes was identified as potent apoptosis inducers through a cell-based high throughput screening assay. Six compounds from this series, MX-58151, MX-58276, MX-76747, MX-116214, MX-116407, and MX-126303, were further profiled and shown to have potent in vitro cytotoxic activity toward proliferating cells only and to interact with tubulin at the colchicine-binding site, thereby inhibiting tubulin polymerization and leading to cell cycle arrest and apoptosis. Furthermore, these compounds were shown to disrupt newly formed capillary tubes in vitro at low nanomolar concentrations. These data suggested that the compounds might have vascular targeting activity. In this study, we have evaluated the ability of these compounds to disrupt tumor vasculature and to induce tumor necrosis. We investigated the pharmacokinetic and toxicity profiles of all six compounds and examined their ability to induce tumor necrosis. We next examined the antitumor efficacy of a subset of compounds in three different human solid tumor xenografts. In the human lung tumor xenograft (Calu-6), MX-116407 was highly active, producing tumor regressions in all 10 animals. Moreover, MX-116407 significantly enhanced the antitumor activity of cisplatin, resulting in 40% tumor-free animals at time of sacrifice. Our results identify MX-116407 as the lead candidate and strongly support its continued development as a novel anticancer agent for human use.

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3