Stress Granules Determine the Development of Obesity-Associated Pancreatic Cancer

Author:

Fonteneau Guillaume1ORCID,Redding Alexandra1ORCID,Hoag-Lee Hannah1ORCID,Sim Edward S.1ORCID,Heinrich Stefan2ORCID,Gaida Matthias M.345ORCID,Grabocka Elda1ORCID

Affiliation:

1. 1Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.

2. 2Department of Surgery, University Medical Center Mainz, JGU-Mainz, Mainz, Germany.

3. 3Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Mainz, Germany.

4. 4Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, Mainz, Germany.

5. 5Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, JGU-Mainz, Mainz, Germany.

Abstract

Abstract Obesity is a global epidemic and a major predisposing factor for cancer. Increasing evidence shows that obesity-associated stress is a key driver of cancer risk and progression. Previous work has identified the phase-separation organelles, stress granules (SG), as mutant KRAS–dependent mediators of stress adaptation. However, the dependence of tumorigenesis on these organelles is unknown. Here, we establish a causal link between SGs and pancreatic ductal adenocarcinoma (PDAC). Importantly, we uncover that dependence on SGs is drastically heightened in obesity-associated PDAC. Furthermore, we identify a previously unknown regulator and component of SGs, namely, the serine/arginine protein kinase 2 (SRPK2), as a specific determinant of SG formation in obesity-associated PDAC. We show that SRPK2-mediated SG formation in obesity-associated PDAC is driven by hyperactivation of the IGF1/PI3K/mTOR/S6K1 pathway and that S6K1 inhibition selectively attenuates SGs and impairs obesity-associated PDAC development. Significance: We show that stress adaptation via the phase-separation organelles SGs mediates PDAC development. Moreover, preexisting stress conditions such as obesity are a driving force behind tumor SG dependence, and enhanced SG levels are key determinants and a chemopreventive target for obesity-associated PDAC. This article is highlighted in the In This Issue feature, p. 1825

Funder

NIH NCI

German Research Foundation

National Cancer Center

Publisher

American Association for Cancer Research (AACR)

Subject

Oncology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3