Large-scale Pan-cancer Cell Line Screening Identifies Actionable and Effective Drug Combinations

Author:

Bashi Azadeh C.1ORCID,Coker Elizabeth A.2ORCID,Bulusu Krishna C.1ORCID,Jaaks Patricia2ORCID,Crafter Claire1ORCID,Lightfoot Howard2ORCID,Milo Marta1ORCID,McCarten Katrina2ORCID,Jenkins David F.3ORCID,van der Meer Dieudonne2ORCID,Lynch James T.1ORCID,Barthorpe Syd2ORCID,Andersen Courtney L.3ORCID,Barry Simon T.1ORCID,Beck Alexandra2ORCID,Cidado Justin3ORCID,Gordon Jacob A.3ORCID,Hall Caitlin2ORCID,Hall James2ORCID,Mali Iman2ORCID,Mironenko Tatiana2ORCID,Mongeon Kevin3ORCID,Morris James2ORCID,Richardson Laura2ORCID,Smith Paul D.1ORCID,Tavana Omid3ORCID,Tolley Charlotte2ORCID,Thomas Frances2ORCID,Willis Brandon S.3ORCID,Yang Wanjuan2ORCID,O'Connor Mark J.1ORCID,McDermott Ultan1ORCID,Critchlow Susan E.1ORCID,Drew Lisa3ORCID,Fawell Stephen E.3ORCID,Mettetal Jerome T.3ORCID,Garnett Mathew J.2ORCID

Affiliation:

1. 1Oncology R&D, AstraZeneca, Cambridge, United Kingdom.

2. 2Wellcome Sanger Institute, Cambridge, United Kingdom.

3. 3Oncology R&D, AstraZeneca, Waltham, Massachusetts.

Abstract

Abstract Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific “emergent” biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. Significance: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of “emergent” combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695

Funder

Wellcome Trust

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3