Elucidating Analytic Bias Due to Informative Cohort Entry in Cancer Clinico-genomic Datasets

Author:

Kehl Kenneth L.1ORCID,Uno Hajime1ORCID,Gusev Alexander1ORCID,Groha Stefan1ORCID,Brown Samantha2ORCID,Lavery Jessica A.2ORCID,Schrag Deborah3ORCID,Panageas Katherine S.2ORCID

Affiliation:

1. 1Division of Population Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.

2. 2Department of Epidemiology & Biostatistics, Memorial-Sloan Kettering Cancer Center, New York, New York.

3. 3Department of Medicine, Memorial-Sloan Kettering Cancer Center, New York, New York.

Abstract

AbstractBackground:Oncologists often order genomic testing to inform treatment for worsening cancer. The resulting correlation between genomic testing timing and prognosis, or “informative entry,” can bias observational clinico-genomic research. The efficacy of existing approaches to this problem in clinico-genomic cohorts is poorly understood.Methods:We simulated clinico-genomic cohorts followed from an index date to death. Subgroups in each cohort who underwent genomic testing before death were “observed.” We varied data generation parameters under four scenarios: (i) independent testing and survival times; (ii) correlated testing and survival times for all patients; (iii) correlated testing and survival times for a subset of patients; and (iv) testing and mortality exclusively following progression events. We examined the behavior of conditional Kendall tau (Tc) statistics, Cox entry time coefficients, and biases in overall survival (OS) estimation and biomarker inference across scenarios.Results:Scenario #1 yielded null Tc and Cox entry time coefficients and unbiased OS inference. Scenario #2 yielded positive Tc, negative Cox entry time coefficients, underestimated OS, and biomarker associations biased toward the null. Scenario #3 yielded negative Tc, positive Cox entry time coefficients, and underestimated OS, but biomarker estimates were less biased. Scenario #4 yielded null Tc and Cox entry time coefficients, underestimated OS, and biased biomarker estimates. Transformation and copula modeling did not provide unbiased results.Conclusions:Approaches to informative clinico-genomic cohort entry, including Tc and Cox entry time statistics, are sensitive to heterogeneity in genotyping and survival time distributions.Impact:Novel methods are needed for unbiased inference using observational clinico-genomic data.

Funder

National Cancer Institute

Doris Duke Charitable Foundation

American Association for Cancer Research

Publisher

American Association for Cancer Research (AACR)

Subject

Oncology,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3