Affiliation:
1. 1Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
2. 2Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
Abstract
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease that lacks effective treatment options, highlighting the need for developing new therapeutic interventions. Here, we assessed the response to pharmacologic inhibition of KRAS, the central oncogenic driver of PDAC. In a panel of PDAC cell lines, inhibition of KRASG12D with MRTX1133 yielded variable efficacy in suppressing cell growth and downstream gene expression programs in 2D cultures. On the basis of CRISPR-Cas9 loss-of-function screens, ITGB1 was identified as a target to enhance the therapeutic response to MRTX1133 by regulating mechanotransduction signaling and YAP/TAZ expression, which was confirmed by gene-specific knockdown and combinatorial drug synergy. Interestingly, MRTX1133 was considerably more efficacious in 3D cell cultures. Moreover, MRTX1133 elicited a pronounced cytostatic effect in vivo and controlled tumor growth in PDAC patient-derived xenografts. In syngeneic models, KRASG12D inhibition led to tumor regression that did not occur in immune-deficient hosts. Digital spatial profiling on tumor tissues indicated that MRTX1133-mediated KRAS inhibition enhanced IFNγ signaling and induced antigen presentation that modulated the tumor microenvironment. Further investigation of the immunologic response using single-cell sequencing and multispectral imaging revealed that tumor regression was associated with suppression of neutrophils and influx of effector CD8+ T cells. Together, these findings demonstrate that both tumor cell-intrinsic and -extrinsic events contribute to response to MRTX1133 and credential KRASG12D inhibition as a promising therapeutic strategy for a large percentage of patients with PDAC.
Significance:
Pharmacologic inhibition of KRAS elicits varied responses in pancreatic cancer 2D cell lines, 3D organoid cultures, and xenografts, underscoring the importance of mechanotransduction and the tumor microenvironment in regulating therapeutic responses.
Funder
National Cancer Institute
National Institutes of Health
Office of Research Infrastructure Programs
Publisher
American Association for Cancer Research (AACR)
Reference70 articles.
1. Recent insights into the biology of pancreatic cancer;Yao;EBioMedicine,2020
2. Pancreatic cancer;Kleeff;Nat Rev Dis Primers,2016
3. Whole exome sequencing of pancreatic cancer:genetic diversity, prognostic features, and potential therapeutic targets;Witkiewicz;Nat Communication,2014
4. Genomic analyses identify molecular subtypes of pancreatic cancer;Bailey;Nature,2016
5. A randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas;Infante;Eur J Cancer,2014
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献