Fatty Acids Invigorate Tumor-Resident Memory T Cells

Author:

Chakraborty Paramita1ORCID,Mills Stephanie1ORCID,Mehrotra Shikhar1ORCID

Affiliation:

1. 1Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.

Abstract

AbstractTissue-resident memory T cells (Trm) represent a diverse cell type with tissue-specific gene signatures that can operate as both effector and memory T cells. Trm cells play a crucial role in immune defense against infections and cancer. Recently, Trm cells have become appreciated as a critical responder to checkpoint immunotherapy and as a biomarker of favorable outcomes in cancer. Hence, it is of great clinical and therapeutic importance to investigate how Trm cells can be manipulated transcriptionally, epigenetically, or metabolically to improve their longevity and function. In this issue of Cancer Research, Feng and colleagues demonstrate that the transcription factor SCML4 is essential for the development and polyfunctionality of Trm cells. Fatty acids mediated the upregulation of SCML4 via the mTOR–IRF4–PRDM1 signaling pathway, which significantly enhanced tumor control in multiple aggressive murine tumor models and was associated with a favorable prognosis for patients with cancer. The findings also suggest that SCML4-mediated engagement of the HBO1–BRPF2–ING4 complex epigenetically reprogramed Trm cells by increasing the expression of several survival- and effector-associated molecules while blocking the expression of checkpoint inhibitors. Overall, Feng and colleagues highlight a critical activation target for tumor immunotherapy and provide a molecular perspective on recruiting antitumor Trm cells to the tumor niche by regulating fatty acids.See related article by Feng et al., p. 3368

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3