Meta-Analysis of Human Cancer Single-Cell RNA-Seq Datasets Using the IMMUcan Database

Author:

Camps Jordi1ORCID,Noël Floriane2ORCID,Liechti Robin3ORCID,Massenet-Regad Lucile24ORCID,Rigade Sidwell2ORCID,Götz Lou3ORCID,Hoffmann Caroline5ORCID,Amblard Elise26ORCID,Saichi Melissa2ORCID,Ibrahim Mahmoud M.7ORCID,Pollard Jack8ORCID,Medvedovic Jasna2ORCID,Roider Helge G.9ORCID,Soumelis Vassili21011ORCID

Affiliation:

1. 1Biomedical Data Science, Research & Early Development Oncology, Bayer AG, Berlin, Germany.

2. 2Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France.

3. 3Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

4. 4Université Paris-Saclay, Saint Aubin, France.

5. 5Institut Curie, INSERM U932 Research Unit, Department of Surgical Oncology, PSL University, Paris, France.

6. 6Université de Paris, Centre de Recherches Interdisciplinaires, Paris, France.

7. 7Biomedical Data Science, Research & Early Development Premedical, Bayer AG, Wuppertal, Germany.

8. 8Sanofi Research and Development, Cambridge, Massachusetts.

9. 9Oncology Precision Medicine, Research & Early Development Oncology, Bayer AG, Berlin, Germany.

10. 10Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France.

11. 11Owkin, Paris, France.

Abstract

Abstract The development of single-cell RNA sequencing (scRNA-seq) technologies has greatly contributed to deciphering the tumor microenvironment (TME). An enormous amount of independent scRNA-seq studies have been published representing a valuable resource that provides opportunities for meta-analysis studies. However, the massive amount of biological information, the marked heterogeneity and variability between studies, and the technical challenges in processing heterogeneous datasets create major bottlenecks for the full exploitation of scRNA-seq data. We have developed IMMUcan scDB (https://immucanscdb.vital-it.ch), a fully integrated scRNA-seq database exclusively dedicated to human cancer and accessible to nonspecialists. IMMUcan scDB encompasses 144 datasets on 56 different cancer types, annotated in 50 fields containing precise clinical, technological, and biological information. A data processing pipeline was developed and organized in four steps: (i) data collection; (ii) data processing (quality control and sample integration); (iii) supervised cell annotation with a cell ontology classifier of the TME; and (iv) interface to analyze TME in a cancer type–specific or global manner. This framework was used to explore datasets across tumor locations in a gene-centric (CXCL13) and cell-centric (B cells) manner as well as to conduct meta-analysis studies such as ranking immune cell types and genes correlated to malignant transformation. This integrated, freely accessible, and user-friendly resource represents an unprecedented level of detailed annotation, offering vast possibilities for downstream exploitation of human cancer scRNA-seq data for discovery and validation studies. Significance: The IMMUcan scDB database is an accessible supportive tool to analyze and decipher tumor-associated single-cell RNA sequencing data, allowing researchers to maximally use this data to provide new insights into cancer biology.

Funder

Horizon 2020 Framework Programme

Canceropôle PACA

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3