Transient Differentiation-State Plasticity Occurs during Acute Lymphoblastic Leukemia Initiation

Author:

Poort Vera M.12ORCID,Hagelaar Rico12ORCID,van Roosmalen Markus J.12ORCID,Trabut Laurianne12ORCID,Buijs-Gladdines Jessica G. C. A. M.1ORCID,van Wijk Bram3ORCID,Meijerink Jules1ORCID,van Boxtel Ruben12ORCID

Affiliation:

1. Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands. 1

2. Oncode Institute, Utrecht, the Netherlands. 2

3. Department of Pediatric Cardiothoracic Surgery, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands. 3

Abstract

Abstract Leukemia is characterized by oncogenic lesions that result in a block of differentiation, whereas phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity. Single-cell whole genome sequencing of leukemic blasts was combined with multiparameter flow cytometry to couple cell identity and clonal lineages. Irrespective of genetic events, leukemia-initiating cells altered their phenotypes by differentiation and dedifferentiation. The construction of the phylogenies of individual leukemias using somatic mutations revealed that phenotypic diversity is reflected by the clonal structure of cancer. The analysis also indicated that the acquired phenotypes are heritable and stable. Together, these results demonstrate a transient period of plasticity during leukemia initiation, where phenotypic switches seem unidirectional. Significance: A method merging multicolor flow cytometry with single-cell whole genome sequencing to couple cell identity with clonal lineages uncovers differentiation-state plasticity in leukemia, reconciling blocked differentiation with phenotypic plasticity in cancer.

Funder

New York Stem Cell Foundation

Stichting Kinderen Kankervrij

KWF Kankerbestrijding

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3