Inhibition of Nuclear Translocation of Nuclear Factor-κB Contributes to 3,3′-Diindolylmethane-Induced Apoptosis in Breast Cancer Cells

Author:

Rahman KM Wahidur1,Sarkar Fazlul H.1

Affiliation:

1. Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan

Abstract

AbstractDietary indole-3-carbinol (I3C), a natural compound present in vegetables of the genus Brassica, showed clinical benefits and caused apoptosis in breast cancer cells. Our laboratory and others have shown that I3C induces apoptosis in breast cancer cells mediated by inactivation of Akt and nuclear factor-κB (NF-κB) pathway. 3,3′-Diindolylmethane (DIM), a major in vivo acid-catalyzed condensation product of I3C, also showed some benefit in breast cancer. However, the precise molecular mechanism(s) by which DIM induces apoptosis in breast cancer cells has not been fully elucidated. Hence, we investigated whether DIM-induced apoptosis of breast cancer cells could also be mediated by inactivation of Akt and NF-κB. We found that DIM induces apoptotic processes in MCF10A derived malignant (MCF10CA1a) cell lines but not in nontumorigenic parental MCF10A cells. DIM specifically inhibits Akt kinase activity and abrogates the epidermal growth factor–induced activation of Akt in breast cancer cells, similar to those observed for I3C. We also found that DIM reduces phosphorylation of IκBα, an inhibitor of NF-κB. Our confocal microscopy study clearly showed that DIM blocks the translocation of p65, a subunit of NF-κB to the nucleus. DNA binding analysis and transfection studies with IκB kinase cDNA revealed that overexpression of IκB kinase mediates IκBα phosphorylation, which activates NF-κB, and this activation was completely abrogated by DIM treatment. Taken together, these results showed for the first time that the inactivation of Akt and NF-κB activity also plays important roles in DIM-induced apoptosis in breast cancer cells, which seems to be more relevant to in vivo situations.

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3