Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss–Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities

Author:

Verma Ravinder1ORCID,Chen Xiameng2ORCID,Xin Dazhuan1ORCID,Luo Zaili1ORCID,Ogurek Sean1ORCID,Xin Mei1ORCID,Rao Rohit1ORCID,Berry Kalen1ORCID,Lu Q. Richard13ORCID

Affiliation:

1. 1Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

2. 2Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas.

3. 3Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.

Abstract

AbstractMalignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter–driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss–induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations.Significance:Multiple progenitor-state mutagenesis reveal that Olig1/2-expressing intermediate precursors are highly susceptible to PTEN/p53-loss–mediated transformation and impart differential drug sensitivity, indicating tumor-initiating cell states and genetic drivers dictate glioma phenotypes and drug responses.See related commentary by Zamler and Hu, p. 807

Funder

CancerFree KIDS

Pray-Hope-Believe Foundation

TeamConnor Childhood Cancer Foundation

Cure Starts Now Foundation

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3