Attenuation of Sialylation Augments Antitumor Immunity and Improves Response to Immunotherapy in Ovarian Cancer

Author:

Cao Kankan1ORCID,Zhang Guodong12ORCID,Yang Moran1ORCID,Wang Yiying1ORCID,He Mengdi1ORCID,Zhang Chen1ORCID,Huang Yan3ORCID,Lu Jiaqi2ORCID,Liu Haiou1ORCID

Affiliation:

1. 1Shanghai Key Laboratory of Female Reproductive Endocrine–Related Diseases, Obstetrics, and Gynecology Hospital, Fudan University, Shanghai, China.

2. 2Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.

3. 3Department of Gynecologic Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.

Abstract

Abstract Aberrant sialylation functions as an important modulator of all steps of malignant transformation. Therefore, targeting sialylation regulators, such as sialyltransferases and neuraminidases, is a potential strategy for treating cancer. Here, we found that elevated α2,3-sialyltransferase III (St3gal3) was associated with dismal prognosis in high-grade serous ovarian carcinoma (HGSC). St3gal3 knockdown antagonized subcutaneous tumor growth in immunocompetent, but not immunodeficient mice, with enhanced accumulation of functional CD8+ T cells and antitumor immune gene signatures. St3gal3 knockdown inhibited intraperitoneal tumor growth and repolarized tumor-associated macrophages from a protumorigenic M2-like to a tumor-suppressive M1-like phenotype. In vitro, St3gal3 knockdown tumor cells guided bone marrow–derived macrophages (BMDM) toward the M1-like phenotype under both direct contact and distant Transwell coculture conditions. Depletion of macrophages rescued the suppressed tumor growth induced by St3gal3 knockdown and completely suppressed infiltration of functional CD8+ T cells that rely on macrophage-derived CXCL10. St3gal3 engendered an immunosuppressive HGSC microenvironment characterized by an abundance of pro-tumorigenic macrophages and reduced cytotoxic T-cell infiltration. In vivo, St3gal3 knockdown improved effectiveness of dual immune checkpoint blockade (ICB) with αPD-1 and αCTLA4 antibodies. Preclinical inhibition of sialylation with ambroxol resulted in decreased tumor growth and prolonged the survival of tumor-bearing mice, which was enhanced by the addition of dual ICB. These findings indicate that altered sialylation induced by St3gal3 upregulation promotes a tumor-suppressive microenvironment in HGSC and targeting α2,3-sialylation may reprogram the immunosuppressive tumor microenvironment and improve the efficacy of immunotherapy. Significance: Blocking sialylation augments antitumor immunity and enhances response to immune checkpoint blockade therapy, highlighting a potential therapeutic approach for treating patients with high-grade serous ovarian cancer.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Science and Technology Commission of Shanghai Municipality

Shanghai Clinical Research Center

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3