Affiliation:
1. 1Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
2. 2VA Greater Los Angeles Healthcare System, Los Angeles, California.
Abstract
Excessive bone deposition associated with prostate cancer bone metastases is believed to aid in metastatic progression. One mechanism of osteoblast expansion is the transdifferentiation of bone marrow endothelial cells. Prostate cancer cells contribute several secreted factors, including bone morphogenetic protein 4 (BMP4), to the microenvironment that support osteoblastic transdifferentiation. In this issue of Cancer Research, Yu and colleagues share their findings of how BMP-mediated endothelial conversion can be inhibited by treatment with retinoic acid receptor (RAR) agonists. Using agonists like the all-trans retinoic acid or palovarotene, the authors demonstrated the role of the interaction of BMP-activated SMAD1 with RARγ for osteoblastic differentiation. RARγ agonists potentiated the proteasomal degradation of the Smad1–RARγ complex, blocking BMP signaling. Because palovarotene is clinically effective in the treatment of aberrant bone formation found in fibrodysplasia ossificans progressiva, its repurposing for the treatment of osteoblastic cancer metastasis is promising. However, patient selection and dose-finding studies will be critical for the translation of these findings to complement standard of care for patients with bone metastatic prostate cancer.See related article by Yu et al., p. 3158
Publisher
American Association for Cancer Research (AACR)