Estimation of Neutral Mutation Rates and Quantification of Somatic Variant Selection Using cancereffectsizeR

Author:

Mandell Jeffrey D.1ORCID,Cannataro Vincent L.2ORCID,Townsend Jeffrey P.1345ORCID

Affiliation:

1. 1Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut.

2. 2Department of Biology, Emmanuel College, Boston, Massachusetts.

3. 3Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut.

4. 4Genetics, Genomics, and Epigenetics Research Program, Yale Cancer Center, New Haven, Connecticut.

5. 5Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.

Abstract

AbstractSomatic nucleotide mutations can contribute to cancer cell survival, proliferation, and pathogenesis. Although research has focused on identifying which mutations are “drivers” versus “passengers," quantifying the proliferative effects of specific variants within clinically relevant contexts could reveal novel aspects of cancer biology. To enable researchers to estimate these cancer effects, we developed cancereffectsizeR, an R package that organizes somatic variant data, facilitates mutational signature analysis, calculates site-specific mutation rates, and tests models of selection. Built-in models support effect estimation from single nucleotides to genes. Users can also estimate epistatic effects between paired sets of variants, or design and test custom models. The utility of cancer effect was validated by showing in a pan-cancer dataset that somatic variants classified as likely pathogenic or pathogenic in ClinVar exhibit substantially higher effects than most other variants. Indeed, cancer effect was a better predictor of pathogenic status than variant prevalence or functional impact scores. In addition, the application of this approach toward pairwise epistasis in lung adenocarcinoma showed that driver mutations in BRAF, EGFR, or KRAS typically reduce selection for alterations in the other two genes. Companion reference data packages support analyses using the hg19 or hg38 human genome builds, and a reference data builder enables use with any species or custom genome build with available genomic and transcriptomic data. A reference manual, tutorial, and public source code repository are available at https://townsend-lab-yale.github.io/cancereffectsizeR. Comprehensive estimation of cancer effects of somatic mutations can provide insights into oncogenic trajectories, with implications for cancer prognosis and treatment.Significance:An R package provides streamlined, customizable estimation of underlying nucleotide mutation rates and of the oncogenic and epistatic effects of mutations in cancer cohorts.

Funder

National Institute of Dental and Craniofacial Research

Yale School of Public Health, Yale University

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3