Neo-Darwinian Principles Exemplified in Cancer Genomics

Author:

Krueger Karl E.1ORCID

Affiliation:

1. 1Division of Cancer Prevention, NCI, Rockville, Maryland.

Abstract

Abstract Within the last two decades, the advent of next-generation sequencing accompanied by single-cell technologies has enabled cancer researchers to study in detail mutations and other genetic aberrations that transpire during transformation of cells to a neoplastic state. This article covers the insights gained through these extensive studies where neo-Darwinian principles can be inferred to play roles throughout neoplastic transformation. The cells promoted during cancer development exhibit cancer hallmarks combined with the related enabling characteristics as outlined by Hanahan and Weinberg, analogous to natural selection and survival of the fittest. Selection of driver mutations that inactivate proteins encoded by tumor suppressor genes differs in profound ways from mutations that activate tumor promoter proteins. In most cases, the later stages of cancer development are characterized by sudden, extensive damage to chromosomes in a process that is not Darwinian in nature. Nevertheless, cells that survive these cataclysmic events remain subject to Darwinian selection promoting clones exhibiting the greatest rates of progression. Duplications of chromosomal segments containing oncogenes, deletions of segments harboring tumor suppressor genes, or distinctive chromosomal rearrangements are often found in cells progressing into later stages of cancer. In summary, the technological developments in genome sequencing since the start of the century have given us clear insights into genomic alterations promoting tumor progression where neo-Darwinian mechanisms of clonal selection can be inferred to play a primary role.

Funder

n/a

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology,Molecular Biology

Reference65 articles.

1. Mutation and cancer: statistical study of retinoblastoma;Knudson;Proc Natl Acad Sci U S A,1971

2. The multistep nature of cancer;Vogelstein;Trends Genet,1993

3. The hallmarks of cancer;Hanahan;Cell,2000

4. Hallmarks of cancer: the next generation;Hanahan;Cell,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3