Vasorin Exocytosed from Glioma Cells Facilitates Angiogenesis via VEGFR2/AKT Signaling Pathway

Author:

Zhong Ying1ORCID,Kang Hui1ORCID,Ma Ziqing1ORCID,Li Jiayu1ORCID,Qin Zixi1ORCID,Zhang Zixuan1ORCID,Li Peiwen1ORCID,Zhong Ying1ORCID,Wang Lihui1ORCID

Affiliation:

1. Department of Pathology, School of Medicine, Jinan University, Guangzhou, China.

Abstract

Abstract Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an important therapeutic target. Our previous study showed that vasorin (VASN), a transmembrane protein, is overexpressed in glioma and promotes angiogenesis; however, the potential mechanism remains unclear. In this study, we found that human vascular endothelial cells (hEC) co-cultured with VASN-overexpressing glioma cells exhibited accelerated migration ability and increased expression of VASN originated from glioma cells. VASN was found in exosomes secreted by glioma cells and could be taken up by hECs. hECs showed more edge filopodia and significantly upregulated expression of endothelial tip cell marker gene and protein levels after co-culture with VASN-overexpressing glioma cells. In clinical glioma tissue and orthotopic transplantation glioma tissue, the vascular density and the number of vascular endothelial cells with a tip cell phenotype in VASN-overexpressed tissues were significantly higher than in tissues with low expression. At the molecular level, VASN interacted with VEGFR2 and caused internalization and autophosphorylation of VEGFR2 protein, and then activated the AKT signaling pathway. Our study collectively reveals the function and mechanism of VASN in facilitating angiogenesis in glioma, providing a new therapeutic target for glioma. Implications: These findings demonstrate that VASN exocytosed from glioma cells enhanced the migration of vascular endothelial cells by VEGFR2/AKT signaling pathway.

Funder

National Natural Science Foundation of China

Guangzhou Municipal Science and Technology Project

Natural Science Foundation of Guangdong Province

Publisher

American Association for Cancer Research (AACR)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3