CBF-Beta Mitigates PI3K-Alpha–Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer

Author:

Stanland Lyla J.1ORCID,Ang Hazel X.2ORCID,Hoj Jacob P.2ORCID,Chu Yunqiang3ORCID,Tan Patrick34ORCID,Wood Kris C.2ORCID,Luftig Micah A.1ORCID

Affiliation:

1. 1Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina.

2. 2Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.

3. 3Duke-NUS Medical School Singapore, Singapore, Singapore.

4. 4Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.

Abstract

Abstract PIK3CA is the second most mutated gene in cancer leading to aberrant PI3K/AKT/mTOR signaling and increased translation, proliferation, and survival. Some 4%–25% of gastric cancers display activating PIK3CA mutations, including 80% of Epstein–Barr virus–associated GCs. Small molecules, including pan-PI3K and dual PI3K/mTOR inhibitors, have shown moderate success clinically, due to broad on-target/off-tissue effects. Thus, isoform-specific and mutant selective inhibitors have been of significant interest. However, drug resistance is a problem and has affected success of new drugs. There has been a concerted effort to define mechanisms of resistance and identify potent combinations in many tumor types, though gastric cancer is comparatively understudied. In this study, we identified modulators of the response to the PI3Kα-specific inhibitor, BYL719, in PIK3CA-mutant GCs. We found that loss of NEDD9 or inhibition of BCL-XL conferred hypersensitivity to BYL719, through increased cell-cycle arrest and cell death, respectively. In addition, we discovered that loss of CBFB conferred resistance to BYL719. CBFB loss led to upregulation of the protein kinase PIM1, which can phosphorylate and activate several overlapping downstream substrates as AKT thereby maintaining pathway activity in the presence of PI3Kα inhibition. The addition of a pan-PIM inhibitor re-sensitized resistant cells to BYL719. Our data provide clear mechanistic insights into PI3Kα inhibitor response in PIK3CA-mutant gastric tumors and can inform future work as mutant-selective inhibitors are in development for diverse tumor types. Implications: Loss of either NEDD9 or BCL-XL confers hypersensitivity to PI3K-alpha inhibition whereas loss of CBFB confers resistance through a CBFB/PIM1 signaling axis.

Funder

National Cancer Institute

Duke Cancer Institute

Duke-NUS Medical School

Nicholas School of the Environment, Duke University

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer;International Journal of Molecular Sciences;2024-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3