Endometrioid Endometrial RNA Index Predicts Recurrence in Stage I Patients

Author:

Nief Corrine A.12ORCID,Hammer Phoebe M.2ORCID,Wang Aihui2ORCID,Charu Vivek2ORCID,Tanweer Amina2ORCID,Litkouhi Babak3ORCID,Kidd Elizabeth4ORCID,Gentles Andrew J.25ORCID,Howitt Brooke E.2ORCID

Affiliation:

1. Stanford University School of Medicine, Stanford, California. 1

2. Department of Pathology, Stanford University, Stanford, California. 2

3. Department of Biomedical Data Science, Stanford University, Stanford, California. 4

4. Department of Radiation Oncology, Stanford University, Stanford, California. 5

5. Department of Gynecologic Oncology, Stanford University, Stanford, California. 3

Abstract

Abstract Purpose: Risk prediction with genomic and transcriptomic data has the potential to improve patient outcomes by enabling clinicians to identify patients requiring adjuvant treatment approaches, while sparing low-risk patients from unnecessary interventions. Endometrioid endometrial carcinoma (EEC) is the most common cancer in women in developed countries, and rates of endometrial cancer are increasing. Experimental Design: We collected a 105-patient case-control cohort of stage I EEC comprising 45 patients who experienced recurrence less than 6 years after excision, and 60 Fédération Internationale de Gynécologie et d'Obstétrique grade-matched controls without recurrence. We first utilized two RNA-based, previously validated machine learning approaches, namely, EcoTyper and Complexity Index in Sarcoma (CINSARC). We developed Endometrioid Endometrial RNA Index (EERI), which uses RNA expression data from 46 genes to generate a personalized risk score for each patient. EERI was trained on our 105-patient cohort and tested on a publicly available cohort of 263 patients with stage I EEC. Results: EERI was able to predict recurrences with 94% accuracy in the training set and 81% accuracy in the test set. In the test set, patients assigned as EERI high-risk were significantly more likely to experience recurrence (30%) than the EERI low-risk group (1%) with a hazard ratio of 9.9 (95% CI, 4.1–23.8; P < 0.001). Conclusions: Tumors with high-risk genetic features may require additional treatment or closer monitoring and are not readily identified using traditional clinicopathologic and molecular features. EERI performs with high sensitivity and modest specificity, which may benefit from further optimization and validation in larger independent cohorts.

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3