Applications and Opportunities for Immune Cell CAR Engineering in Comparative Oncology

Author:

Rotolo Antonia1ORCID,Atherton Matthew J.2ORCID

Affiliation:

1. 1Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.

2. 2Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.

Abstract

Abstract Chimeric antigen receptor (CAR) T–adoptive cell therapy has transformed the treatment of human hematologic malignancies. However, its application for the treatment of solid tumors remains challenging. An exciting avenue for advancing this field lies in the use of pet dogs, in which cancers that recapitulate the biology, immunological features, and clinical course of human malignancies arise spontaneously. Moreover, their large size, outbred genetic background, shared environment with humans, and immunocompetency make dogs ideal for investigating and optimizing CAR therapies before human trials. Here, we will outline how challenges in early clinical trials in patients with canine lymphoma, including issues related to autologous CAR T-cell manufacturing, limited CAR T-cell persistence, and tumor antigen escape, mirrored challenges observed in human CAR T trials. We will then highlight emerging adoptive cell therapy strategies currently under investigation in dogs with hematological and solid cancers, which will provide crucial safety and efficacy data on novel CAR T regimens that can be used to support clinical trials. By drawing from ongoing studies, we will illustrate how canine patients with spontaneous cancer may serve as compelling screening platforms to establish innovative CAR therapy approaches and identify predictive biomarkers of response, with a specific emphasis on solid tumors. With increased funding for canine immunotherapy studies, multi-institutional investigations are poised to generate highly impactful clinical data that should translate into more effective human trials, ultimately benefiting both human and canine cancer patients.

Funder

SebastianStrong Foundation

National Institutes of Health

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3