Taming Glioblastoma in “Real Time”: Integrating Multimodal Advanced Neuroimaging/AI Tools Towards Creating a Robust and Therapy Agnostic Model for Response Assessment in Neuro-Oncology

Author:

de Godoy Laiz Laura1ORCID,Chawla Sanjeev1ORCID,Brem Steven234ORCID,Mohan Suyash1ORCID

Affiliation:

1. 1Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.

2. 2Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.

3. 3Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.

4. 4Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.

Abstract

Abstract The highly aggressive nature of glioblastoma carries a dismal prognosis despite aggressive multimodal therapy. Alternative treatment regimens, such as immunotherapies, are known to intensify the inflammatory response in the treatment field. Follow-up imaging in these scenarios often mimics disease progression on conventional MRI, making accurate evaluation extremely challenging. To this end, revised criteria for assessment of treatment response in high-grade gliomas were successfully proposed by the RANO Working Group to distinguish pseudoprogression from true progression, with intrinsic constraints related to the postcontrast T1-weighted MRI sequence. To address these existing limitations, our group proposes a more objective and quantifiable “treatment agnostic” model, integrating into the RANO criteria advanced multimodal neuroimaging techniques, such as diffusion tensor imaging (DTI), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), dynamic contrast enhanced (DCE)-MRI, MR spectroscopy, and amino acid-based positron emission tomography (PET) imaging tracers, along with artificial intelligence (AI) tools (radiomics, radiogenomics, and radiopathomics) and molecular information to address this complex issue of treatment-related changes versus tumor progression in “real-time”, particularly in the early posttreatment window. Our perspective delineates the potential of incorporating multimodal neuroimaging techniques to improve consistency and automation for the assessment of early treatment response in neuro-oncology.

Funder

n/a

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3