Membrane-Anchored and Tumor-Targeted IL12 (attIL12)-PBMC Therapy for Osteosarcoma

Author:

Yang Qing12ORCID,Hu Jiemiao2,Jia Zhiliang2ORCID,Wang Qi3ORCID,Wang Jing3,Dao Long Hoang2,Zhang Wendong2,Zhang Sheng2,Xia Xueqing2,Gorlick Richard2ORCID,Li Shulin2ORCID

Affiliation:

1. 1Department of Orthopedic Surgery, The First People's Hospital of Xiangtan City, Xiangtan, China.

2. 2Division of Pediatrics, Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.

3. 3Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Abstract

Abstract Purpose: Chimeric antigen receptor (CAR) T-cell therapy has shown great promise for treating hematologic malignancies but requires a long duration of T-cell expansion, is associated with severe toxicity, and has limited efficacy for treating solid tumors. We designed experiments to address those challenges. Experimental Design: We generated a cell membrane-anchored and tumor-targeted IL12 (attIL12) to arm peripheral blood mononuclear cells (PBMC) instead of T cells to omit the expansion phase for required CAR T cells. Results: This IL12-based attIL12-PBMC therapy showed significant antitumor efficacy in both heterogeneous osteosarcoma patient-derived xenograft tumors and metastatic osteosarcoma tumors with no observable toxic effects. Mechanistically, attIL12-PBMC treatment resulted in tumor-restricted antitumor cytokine release and accumulation of attIL12-PBMCs in tumors. It also induced terminal differentiation of osteosarcoma cells into bone-like cells to impede tumor growth. Conclusions: In summary, attIL12-PBMC therapy is safe and effective against osteosarcoma. Our goal is to move this treatment into a clinical trial. Owing to the convenience of the attIL12-PBMC production process, we believe it will be feasible.

Funder

National Institutes of Health

UT MD Anderson cancer center

NIH

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3