Molecularly Defined Subsets of Ewing Sarcoma Tumors Differ in Their Responses to IGF1R and WEE1 Inhibition

Author:

Soni Upendra Kumar12ORCID,Wang Yuhua12ORCID,Pandey Ram Naresh12ORCID,Roberts Ryan23ORCID,Pressey Joseph G.4ORCID,Hegde Rashmi S.12ORCID

Affiliation:

1. 1Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

2. 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.

3. 3Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.

4. 4Abigail Wexner Research Institute at Nationwide Children's Hospital, Research II, Columbus, Ohio.

Abstract

Abstract Purpose: Targeted cancer therapeutics have not significantly benefited patients with Ewing sarcoma with metastatic or relapsed disease. Understanding the molecular underpinnings of drug resistance can lead to biomarker-driven treatment selection. Experimental Design: Receptor tyrosine kinase (RTK) pathway activation was analyzed in tumor cells derived from a panel of Ewing sarcoma tumors, including primary and metastatic tumors from the same patient. Phospho-RTK arrays, Western blots, and IHC were used. Protein localization and the levels of key markers were determined using immunofluorescence. DNA damage tolerance was measured through PCNA ubiquitination levels and the DNA fiber assay. Effects of pharmacologic inhibition were assessed in vitro and key results validated in vivo using patient-derived xenografts. Results: Ewing sarcoma tumors fell into two groups. In one, IGF1R was predominantly nuclear (nIGF1R), DNA damage tolerance pathway was upregulated, and cells had low replication stress and RRM2B levels and high levels of WEE1 and RAD21. These tumors were relatively insensitive to IGF1R inhibition. The second group had high replication stress and RRM2B, low levels of WEE1 and RAD21, membrane-associated IGF1R (mIGF1R) signaling, and sensitivity to IGF1R or WEE1-targeted inhibitors. Moreover, the matched primary and metastatic tumors differed in IGF1R localization, levels of replication stress, and inhibitor sensitivity. In all instances, combined IGF1R and WEE1 inhibition led to tumor regression. Conclusions: IGF1R signaling mechanisms and replication stress levels can vary among Ewing sarcoma tumors (including in the same patient), influencing the effects of IGF1R and WEE1 treatment. These findings make the case for using biopsy-derived predictive biomarkers at multiple stages of Ewing sarcoma disease management.

Funder

National Cancer Institute

Jeff Gordon Children's Foundation

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3