Affiliation:
1. 1Research and Development, Immunocore, Rockville, Maryland.
2. 2Oxford University, Oxford, United Kingdom.
Abstract
AbstractCancer cells accumulate genetic mutations in coding proteins that may be presented by HLA as neoantigenic peptides (peptide HLA, pHLA). T cells scan for neoantigenic pHLA by the T-cell receptor (TCR):CD3 complex. This complex has the dual function of binding pHLA, by the TCR, and triggering T-cell activation by CD3. Checkpoint therapy activates exhausted T cells to kill cancer cells and generally work best against tumors with high neoantigen burden and in patients with neoantigenic-reactive T cells. TCR T-cell engagers (TCE) are a novel class of immunotherapy that bypasses these two requirements by redirecting polyclonal T cells, regardless of their native specificity, to kill a cancer cell independent of neoantigen burden. This is accomplished through deconstructing the membrane-bound TCR:CD3 complex into a soluble bispecific protein comprised of a targeting domain (TCR) and activating domain (usually anti-CD3 single-chain variable fragment). The pool of targets for TCR TCE is larger than for antibody therapeutics and includes >90% of human intra- or extracellular proteins. Most tumor-associated antigens for solid tumors are intracellular and accessible only by a TCR therapeutic. Tebentafusp, a TCR TCE directed to a peptide derived from the gp100 melanoma protein presented by HLA*A02:01, demonstrated a survival benefit in metastatic uveal melanoma (mUM). This survival benefit highlights the promise of TCR TCEs because mUM is a solid tumor with a very low neoantigen burden and has poor response to checkpoints and chemotherapy. Other TCR TCE programs are now in clinical studies for a broader range of tumors.
Publisher
American Association for Cancer Research (AACR)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献