The E3 Ubiquitin Ligase FBXO38 Maintains the Antitumor Function of Natural Killer Cells by Sustaining IL15R Signaling

Author:

Shi Yongjing12ORCID,Zheng Xiaodong12ORCID,Peng Hui12ORCID,Xu Chenqi3ORCID,Sun Rui12ORCID,Tian Zhigang12ORCID,Sun Haoyu456ORCID,Wang Xianwei12ORCID

Affiliation:

1. Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. 1

2. Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China. 2

3. State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China. 3

4. Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China. 4

5. Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. 5

6. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. 6

Abstract

Abstract Natural killer (NK) cells are the main innate antitumor effector cells but their function is often constrained in the tumor microenvironment. It has been reported that the E3 ligase FBXO38 accelerates PD-1 degradation in tumor-infiltrating T cells to unleash their cytotoxic function. In this study, we found that the transcriptional levels of FBXO38 in intratumoral NK cells of patients with cancer and tumor-bearing mice were significantly lower than in peritumoral NK cells. Conditional knockout of FBXO38 in NK cells accelerated tumor growth and increased tumor metastasis. FBXO38 deficiency resulted in impaired proliferation and survival of tumor-infiltrating NK (TINK) cells. Mechanistically, FBXO38 deficiency enhanced TGF-β signaling, including elevating expression of Smad2 and Smad3, which suppressed expression of the transcription factor Eomes and further reduced expression of surface IL15Rβ and IL15Rγc on NK cells. Consequently, FBXO38 deficiency led to TINK cell hyporesponsiveness to IL15. Consistent with these observations, FBXO38 mRNA expression was positively correlated with the proliferation of TINK cells in multiple human tumors. To study the therapeutic potential of FBXO38, mice bearing human tumors were treated with FBXO38 overexpressed human primary NK cells and showed a significant reduction in tumor size and prolonged survival. In conclusion, our results suggest that FBXO38 sustains NK-cell expansion and survival to promote antitumor immunity and have potential therapeutic implications as they suggest FBXO38 could be harnessed to enhance NK cell–based cancer immunotherapy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences

Institute of Health and Medicine, Hefei Comprehensive National Science Center

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3