Tumor Cell–Derived Microparticles Induced by Methotrexate Augment T-cell Antitumor Responses by Downregulating Expression of PD-1 in Neutrophils

Author:

Xu Pingwei1ORCID,Zhang Xiaojie2ORCID,Chen Kai3ORCID,Zhu Meng4ORCID,Jia Ru4ORCID,Zhou Qingwei5ORCID,Yang Jintao1ORCID,Dai Juqin1ORCID,Jin Yuepeng3ORCID,Shi Keqing1ORCID

Affiliation:

1. 1Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

2. 2Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

3. 3Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

4. 4The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China.

5. 5School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Abstract

AbstractNeutrophils act as a “double-edged sword” in the tumor microenvironment by either supporting or suppressing tumor progression. Thus, eliciting a neutrophil antitumor response remains challenging. Here, we showed that tumor cell–derived microparticles induced by methotrexate (MTX-MP) acts as an immunotherapeutic agent to activate neutrophils, increasing the tumor-killing effect of the cells and augmenting T-cell antitumor responses. We found that lactate induced tumor-associated neutrophils to elevate expression of programmed cell death protein 1 (PD-1) and that PD-1+ neutrophils had the properties of N2 neutrophils and suppressed T-cell activation through PD-1/programmed death-ligand 1 (PD-L1) signaling. By performing ex vivo experiments, we found that MTX-MPs–activated neutrophils had reduced surface expression of PD-1 as a result of PD-1 internalization and degradation in the lysosomes, leading to the cells showing a decreased capacity to suppress T-cell responses. In addition, we also found that MTX-MP–activated neutrophils released neutrophil elastase which could kill tumor cells and disrupt tumor stroma, leading to increased T-cell infiltration. Furthermore, using a combination of anti–PD-L1 and MTX-MPs, we observed that long-term survival increased in a mouse model of lung cancer. Collectively, these findings highlight the potential use of a combination of anti–PD-L1 and MTX-MPs to enhance the therapeutic effect of anti–PD-L1 alone.

Funder

National Natural Science Foundation of China

Medical Health Science and Technology Project of Zhejiang Provincial Health Commission

the Provinces and Ministries Co-Contribution of Zhejiang

Key Project of Wenzhou Science and Technolog Bureau

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3