Author:
Polesso Fanny,Weinberg Andrew D.,Moran Amy E.
Abstract
<div>Abstract<p>The protective capability of tumor antigen–specific T cells is regulated by costimulatory and inhibitory signals. Current approaches in cancer immunotherapy seek to restore the function of unresponsive T cells by blocking inhibitory pathways. In contrast, providing exogenous costimulatory signals to T cells also enhances antitumor functionality. By combining these two clinical approaches, we demonstrate the synergy of targeting PD-L1 together with the costimulatory molecule OX40, to enhance antitumor immunity. Concurrently blocking PD-L1 and providing a costimulatory agonist to OX40 increased the presence and functionality of tumor antigen–specific CD8<sup>+</sup> T cells with simultaneous enhancement of T-helper type 1 (Th1)-skewed CD4<sup>+</sup> T cells. This shift was functionally supported by increased glucose metabolism of antigen-specific CD8<sup>+</sup> T cells and the acquisition of granzyme B by regulatory T cells. Together, this mechanism promoted tumor regression of late-stage tumors beyond that achieved by either blockade as monotherapy. These findings indicate that targeting both T-cell intrinsic (OX40) and extrinsic (PD-L1) regulatory molecules increases the bioenergetic potential of T cells, thereby expanding functional and tumor antigen–specific T cells.</p></div>
Publisher
American Association for Cancer Research (AACR)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献