IDO Vaccine Ablates Immune-Suppressive Myeloid Populations and Enhances Antitumor Effects Independent of Tumor Cell IDO Status

Author:

Nandre Rahul12,Verma Vivek12ORCID,Gaur Pankaj12ORCID,Patil Veerupaxagouda12ORCID,Yang Xingdong1,Ramlaoui Zainab1,Shobaki Nour1ORCID,Andersen Mads Hald3ORCID,Pedersen Ayako Wakatsuki3ORCID,Zocca Mai-Britt3ORCID,Mkrtichyan Mikayel12,Gupta Seema12ORCID,Khleif Samir N.12ORCID

Affiliation:

1. 1The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia.

2. 2Georgia Cancer Center, Augusta University, Augusta, Georgia.

3. 3IO Biotech ApS, København, Denmark.

Abstract

Abstract The immunosuppressive tumor microenvironment (TME) does not allow generation and expansion of antitumor effector cells. One of the potent immunosuppressive factors present in the TME is the indoleamine-pyrrole 2,3-dioxygenase (IDO) enzyme, produced mainly by cancer cells and suppressive immune cells of myeloid origin. In fact, IDO+ myeloid-derived suppressor cells (MDSC) and dendritic cells (DC) tend to be more suppressive than their IDO− counterparts. Hence, therapeutic approaches that would target the IDO+ cells in the TME, while sparing the antigen-presenting functions of IDO− myeloid populations, are needed. Using an IDO-specific peptide vaccine (IDO vaccine), we explored the possibility of generating effector cells against IDO and non-IDO tumor-derived antigens. For this, IDO-secreting (B16F10 melanoma) and non–IDO-secreting (TC-1) mouse tumor models were employed. We showed that the IDO vaccine significantly reduced tumor growth and enhanced survival of mice in both the tumor models, which associated with a robust induction of IDO-specific effector cells in the TME. The IDO vaccine significantly enhanced the antitumor efficacy of non-IDO tumor antigen–specific vaccines, leading to an increase in the number of total and antigen-specific activated CD8+ T cells (IFNγ+ and granzyme B+). Treatment with the IDO vaccine significantly reduced the numbers of IDO+ MDSCs and DCs, and immunosuppressive regulatory T cells in both tumor models, resulting in enhanced therapeutic ratios. Together, we showed that vaccination against IDO is a promising therapeutic option for both IDO-producing and non–IDO-producing tumors. The IDO vaccine selectively ablates the IDO+ compartment in the TME, leading to a significant enhancement of the immune responses against other tumor antigen–specific vaccines.

Funder

NIH NCI

NIH

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Immunology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3