Affiliation:
1. 1The Center for Immunology and Immunotherapy, The Loop Immuno-Oncology Laboratory, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia.
2. 2Georgia Cancer Center, Augusta University, Augusta, Georgia.
3. 3IO Biotech ApS, København, Denmark.
Abstract
Abstract
The immunosuppressive tumor microenvironment (TME) does not allow generation and expansion of antitumor effector cells. One of the potent immunosuppressive factors present in the TME is the indoleamine-pyrrole 2,3-dioxygenase (IDO) enzyme, produced mainly by cancer cells and suppressive immune cells of myeloid origin. In fact, IDO+ myeloid-derived suppressor cells (MDSC) and dendritic cells (DC) tend to be more suppressive than their IDO− counterparts. Hence, therapeutic approaches that would target the IDO+ cells in the TME, while sparing the antigen-presenting functions of IDO− myeloid populations, are needed. Using an IDO-specific peptide vaccine (IDO vaccine), we explored the possibility of generating effector cells against IDO and non-IDO tumor-derived antigens. For this, IDO-secreting (B16F10 melanoma) and non–IDO-secreting (TC-1) mouse tumor models were employed. We showed that the IDO vaccine significantly reduced tumor growth and enhanced survival of mice in both the tumor models, which associated with a robust induction of IDO-specific effector cells in the TME. The IDO vaccine significantly enhanced the antitumor efficacy of non-IDO tumor antigen–specific vaccines, leading to an increase in the number of total and antigen-specific activated CD8+ T cells (IFNγ+ and granzyme B+). Treatment with the IDO vaccine significantly reduced the numbers of IDO+ MDSCs and DCs, and immunosuppressive regulatory T cells in both tumor models, resulting in enhanced therapeutic ratios. Together, we showed that vaccination against IDO is a promising therapeutic option for both IDO-producing and non–IDO-producing tumors. The IDO vaccine selectively ablates the IDO+ compartment in the TME, leading to a significant enhancement of the immune responses against other tumor antigen–specific vaccines.
Publisher
American Association for Cancer Research (AACR)
Subject
Cancer Research,Immunology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献