Targeting the Clear Cell Sarcoma Oncogenic Driver Fusion Gene EWSR1::ATF1 by HDAC Inhibition

Author:

Mae Hirokazu1ORCID,Outani Hidetatsu1ORCID,Imura Yoshinori1ORCID,Chijimatsu Ryota2ORCID,Inoue Akitomo1ORCID,Kotani Yuki1ORCID,Yasuda Naohiro3ORCID,Nakai Sho4ORCID,Nakai Takaaki1ORCID,Takenaka Satoshi4ORCID,Okada Seiji1ORCID

Affiliation:

1. 1Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.

2. 2Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan.

3. 3Department of Orthopedic Surgery, Osaka National Hospital, Osaka, Japan.

4. 4Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan.

Abstract

Clear cell sarcoma (CCS), a rare but extremely aggressive malignancy with no effective therapy, is characterized by the expression of the oncogenic driver fusion gene EWSR1::ATF1. In this study, we performed a high-throughput drug screening, finding that the histone deacetylase inhibitor vorinostat exerted an antiproliferation effect with the reduced expression of EWSR1::ATF1. We expected the reduced expression of EWSR1::ATF1 to be due to the alteration of chromatin accessibility; however, assay for transposase-accessible chromatin using sequencing and a cleavage under targets and release using nuclease assay revealed that chromatin structure was only slightly altered, despite histone deacetylation at the EWSR1::ATF1 promoter region. Alternatively, we found that vorinostat treatment reduced the level of BRD4, a member of the bromodomain and extraterminal motif protein family, at the EWSR1::ATF1 promoter region. Furthermore, the BRD4 inhibitor JQ1 downregulated EWSR1::ATF1 according to Western blotting and qPCR analyses. In addition, motif analysis revealed that vorinostat treatment suppressed the transcriptional factor SOX10, which directly regulates EWSR1::ATF1 expression and is involved in CCS proliferation. Importantly, we demonstrate that a combination therapy of vorinostat and JQ1 synergistically enhances antiproliferation effect and EWSR1::ATF1 suppression. These results highlight a novel fusion gene suppression mechanism achieved using epigenetic modification agents and provide a potential therapeutic target for fusion gene–related tumors. Significance: This study reveals the epigenetic and transcriptional suppression mechanism of the fusion oncogene EWSR1::ATF1 in clear cell sarcoma by histone deacetylase inhibitor treatment as well as identifying SOX10 as a transcription factor that regulates EWSR1::ATF1 expression.

Funder

MEXT | Japan Society for the Promotion of Science

Osaka Medical Research Foundation for Intractable Diseases

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3