A Spatially Resolved Mechanistic Growth Law for Cancer Drug Development Predicting Tumor Growing Fractions

Author:

Nasim Adam1,Yates James2,Derks Gianne1ORCID,Dunlop Carina1ORCID

Affiliation:

1. 1Department of Mathematics, University of Surrey, Guildford, United Kingdom.

2. 2Oncology R&D, AstraZeneca, Cambridge, United Kingdom.

Abstract

Mathematical models used in preclinical drug discovery tend to be empirical growth laws. Such models are well suited to fitting the data available, mostly longitudinal studies of tumor volume; however, they typically have little connection with the underlying physiologic processes. This lack of a mechanistic underpinning restricts their flexibility and potentially inhibits their translation across studies including from animal to human. Here we present a mathematical model describing tumor growth for the evaluation of single-agent cytotoxic compounds that is based on mechanistic principles. The model can predict spatial distributions of cell subpopulations and account for spatial drug distribution effects within tumors. Importantly, we demonstrate that the model can be reduced to a growth law similar in form to the ones currently implemented in pharmaceutical drug development for preclinical trials so that it can integrated into the current workflow. We validate this approach for both cell-derived xenograft and patient-derived xenograft (PDX) data. This shows that our theoretical model fits as well as the best performing and most widely used models. However, in addition, the model is also able to accurately predict the observed growing fraction of tumours. Our work opens up current preclinical modeling studies to also incorporating spatially resolved and multimodal data without significant added complexity and creates the opportunity to improve translation and tumor response predictions. Significance: This theoretical model has the same mathematical structure as that currently used for drug development. However, its mechanistic basis enables prediction of growing fraction and spatial variations in drug distribution.

Publisher

American Association for Cancer Research (AACR)

Reference35 articles.

1. Opportunities for quantitative translational modeling in oncology;Yates;Clin Pharmacol Ther,2020

2. Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents;Simeoni;Cancer Res,2004

3. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis;Ribba;CPT Pharmacometrics Syst Pharmacol,2014

4. Differences in predictions of ODE models of tumor growth: a cautionary example;Murphy;BMC Cancer,2016

5. Best fitting tumor growth models of the von Bertalanffy-Puetter type;Kühleitner;BMC Cancer,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3