Nucleolar Localization of the RNA Helicase DDX21 Predicts Survival Outcomes in Gynecologic Cancers

Author:

Aljardali Marwa W.12ORCID,Kremer Kevin M.123ORCID,Parker Jessica E.123ORCID,Fleming Elaine3ORCID,Chen Hao4ORCID,Lea Jayanthi S.3ORCID,Kraus W. Lee12ORCID,Camacho Cristel V.12ORCID

Affiliation:

1. 1Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.

2. 2Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas.

3. 3Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas.

4. 4Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.

Abstract

Abstract Cancer cells with DNA repair defects (e.g., BRCA1/2 mutant cells) are vulnerable to PARP inhibitors (PARPi) due to induction of synthetic lethality. However, recent clinical evidence has shown that PARPi can prevent the growth of some cancers irrespective of their BRCA1/2 status, suggesting alternative mechanisms of action. We previously discovered one such mechanism in breast cancer involving DDX21, an RNA helicase that localizes to the nucleoli of cells and is a target of PARP1. We have now extended this observation in endometrial and ovarian cancers and provided links to patient outcomes. When PARP1-mediated ADPRylation of DDX21 is inhibited by niraparib, DDX21 is mislocalized to the nucleoplasm resulting in decreased rDNA transcription, which leads to a reduction in ribosome biogenesis, protein translation, and ultimately endometrial and ovarian cancer cell growth. High PARP1 expression was associated with high nucleolar localization of DDX21 in both cancers. High nucleolar DDX21 negatively correlated with calculated IC50s for niraparib. By studying endometrial cancer patient samples, we were able to show that high DDX21 nucleolar localization was significantly associated with decreased survival. Our study suggests that the use of PARPi as a cancer therapeutic can be expanded to further types of cancers and that DDX21 localization can potentially be used as a prognostic factor and as a biomarker for response to PARPi. Significance: Currently, there are no reliable biomarkers for response to PARPi outside of homologous recombination deficiency. Herein we present a unique potential biomarker, with clear functional understanding of the molecular mechanism by which DDX21 nucleolar localization can predict response to PARPi.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

U.S. Department of Defense

Cecil and Ida Green Foundation

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3