Characterizing Neutrophil Subtypes in Cancer Using scRNA Sequencing Demonstrates the Importance of IL1β/CXCR2 Axis in Generation of Metastasis-specific Neutrophils

Author:

Fetit Rana1ORCID,McLaren Alistair S.123ORCID,White Mark123ORCID,Mills Megan L.1ORCID,Falconer John1ORCID,Cortes-Lavaud Xabier1ORCID,Gilroy Kathryn12ORCID,Lannagan Tamsin R.M.1ORCID,Ridgway Rachel A.1ORCID,Nixon Colin1ORCID,Naiker Varushka1ORCID,Njunge Renee1ORCID,Clarke Cassie J.1ORCID,Whyte Declan1ORCID,Kirschner Kristina12ORCID,Jackstadt Rene1ORCID,Norman Jim12ORCID,Carlin Leo M.12ORCID,Campbell Andrew D.1ORCID,Sansom Owen J.12ORCID,Steele Colin W.124ORCID

Affiliation:

1. 1CRUK Scotland Institute, Glasgow, United Kingdom.

2. 2School of Cancer Sciences, MVLS, University of Glasgow, Glasgow, United Kingdom.

3. 3Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.

4. 4Glasgow Royal Infirmary, Glasgow, United Kingdom.

Abstract

Abstract Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand–receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1β/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1β/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. Significance: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1β/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.

Funder

UK Research and Innovation

Cancer Research UK

Blood Cancer UK

UKRI | Medical Research Council

CRUK | Beatson Institute for Cancer Research

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3