Functional Heterogeneity in MET Pathway Activation in PDX Models of Osimertinib-resistant EGFR-driven Lung Cancer

Author:

Roper Nitin1ORCID,El Meskini Rajaa2ORCID,Maity Tapan3ORCID,Atkinson Devon2ORCID,Day Amanda2ORCID,Pate Nathan2ORCID,Cultraro Constance M.3ORCID,Pack Svetlana4ORCID,Zgonc Valerie4ORCID,Weaver Ohler Zoe2ORCID,Guha Udayan35ORCID

Affiliation:

1. 1Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland.

2. 2Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland.

3. 3Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland.

4. 4Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland.

5. 5NextCure Inc., Beltsville, Maryland.

Abstract

Abstract MET pathway activation is one of the most common mechanisms of resistance to osimertinib in EGFR-mutant non–small cell lung cancer (NSCLC). We previously demonstrated spatial and temporal heterogeneity in MET pathway activation upon osimertinib resistance in EGFR-mutant NSCLC; however, the functional relevance of these findings is unclear. Here, we generated 19 patient-derived xenografts (PDX) from 9 patients with multi-region and temporal sampling of osimertinib-resistant tumor tissue from patients with EGFR-mutant NSCLC. MET pathway activation was a putative mechanism of osimertinib resistance in 66% (n = 6/9) patients from whom PDXs were generated. Significant spatial and temporal heterogeneity in MET pathway activation was evident. Osimertinib-resistant PDXs with MET amplification by FISH (defined as MET/CEP7 ratio ≥2.0 or mean MET ≥ 6.0 copies/cell) and high-level phospho-MET, but not c-MET expression, had better responses to osimertinib and savolitinib combination than to osimertinib alone. MET polysomy tumors by FISH from both PDXs and patients had evidence of subclonal phospho-MET expression. Select MET polysomy PDX tumors with phospho-MET expression responded better to osimertinib and savolitinib combination than MET polysomy PDX tumors without phospho-MET expression. Our results suggest osimertinib and savolitinib combination is most effective for osimertinib-resistant EGFR-mutant tumors with MET pathway activation as evidenced by phospho-MET. As subclonal MET amplification may be evident in MET polysomy tumor progression, MET polysomy warrants close clinical follow-up with phospho-MET IHC in parallel with FISH diagnostic. Significance: Using a novel cohort of in vivo PDX models of MET pathway activation with acquired resistance to osimertinib in EGFR-mutant lung cancer, we demonstrate that phospho-MET may be a clinically relevant assay to guide treatment selection with osimertinib and savolitinib combination. In addition, our work shows that patients with MET polysomy tumors may have subclonal MET amplification and therefore require close follow up for the use of osimertinib and savolitinib combination.

Funder

HHS | National Institutes of Health

Publisher

American Association for Cancer Research (AACR)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3