Statistical Assessment of Drug Synergy from In Vivo Combination Studies Using Mouse Tumor Models

Author:

Mao Binchen1ORCID,Guo Sheng1ORCID

Affiliation:

1. 1Crown Bioscience Inc., Suzhou, Jiangsu, P.R. China.

Abstract

Abstract Drug combination therapy is a promising strategy for treating cancer; however, its efficacy and synergy require rigorous evaluation in preclinical studies before going to clinical trials. Existing methods have limited power to detect synergy in animal studies. Here, we introduce a novel approach to assess in vivo drug synergy with high sensitivity and low false discovery rate. It can accurately estimate combination index and synergy score under the Bliss independence model and the highest single agent (HSA) model without any assumption on tumor growth kinetics, study duration, data completeness and balance for tumor volume measurement. We show that our method can effectively validate in vitro drug synergy discovered from cell line assays in in vivo xenograft experiments, and can help to elucidate the mechanism of action for immune checkpoint inhibitors in syngeneic mouse models by combining an anti-PD-1 antibody and several tumor-infiltrating leukocytes depletion treatments. We provide a unified view of in vitro and in vivo synergy by presenting a parallelism between the fixed-dose in vitro and the 4-group in vivo combination studies, so they can be better designed, analyzed, and compared. We emphasize that combination index, when defined here via relative survival of tumor cells, is both dose and time dependent, and give guidelines on designing informative in vivo combination studies. We explain how to interpret and apply Bliss and HSA synergies. Finally, we provide an open-source software package named invivoSyn that enables automated analysis of in vivo synergy using our method and several other existing methods. Significance: This work presents a general solution to reliably determine in vivo drug synergy in single-dose 4-group animal combination studies.

Funder

Crown Bioscience, Inc.

Publisher

American Association for Cancer Research (AACR)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3