Weakly Supervised Deep Learning Predicts Immunotherapy Response in Solid Tumors Based on PD-L1 Expression

Author:

Ligero Marta1ORCID,Serna Garazi2ORCID,El Nahhas Omar S.M.3ORCID,Sansano Irene4ORCID,Mauchanski Siarhei2ORCID,Viaplana Cristina5ORCID,Calderaro Julien67ORCID,Toledo Rodrigo A.8ORCID,Dienstmann Rodrigo5ORCID,Vanguri Rami S.9ORCID,Sauter Jennifer L.10ORCID,Sanchez-Vega Francisco11ORCID,Shah Sohrab P.11ORCID,Ramón y Cajal Santiago4ORCID,Garralda Elena12ORCID,Nuciforo Paolo2ORCID,Perez-Lopez Raquel1ORCID,Kather Jakob Nikolas3131415ORCID

Affiliation:

1. 1Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

2. 2Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

3. 3Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.

4. 4Pathology Department, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain.

5. 5Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

6. 6Assistance Publique-Hôpitaux de Paris, Département de Pathologie, CHU Henri Mondor, Créteil, France.

7. 7Université Paris-Est Créteil, Faculté de Médecine, Créteil, France.

8. 8Biomakers and Clonal Dynamics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.

9. 9Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

10. 10Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

11. 11Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.

12. 12Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain.

13. 13Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.

14. 14Department of Medicine I, University Hospital Dresden, Dresden, Germany.

15. 15Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.

Abstract

Abstract Programmed death-ligand 1 (PD-L1) IHC is the most commonly used biomarker for immunotherapy response. However, quantification of PD-L1 status in pathology slides is challenging. Neither manual quantification nor a computer-based mimicking of manual readouts is perfectly reproducible, and the predictive performance of both approaches regarding immunotherapy response is limited. In this study, we developed a deep learning (DL) method to predict PD-L1 status directly from raw IHC image data, without explicit intermediary steps such as cell detection or pigment quantification. We trained the weakly supervised model on PD-L1–stained slides from the non–small cell lung cancer (NSCLC)-Memorial Sloan Kettering (MSK) cohort (N = 233) and validated it on the pan-cancer-Vall d'Hebron Institute of Oncology (VHIO) cohort (N = 108). We also investigated the performance of the model to predict response to immune checkpoint inhibitors (ICI) in terms of progression-free survival. In the pan-cancer-VHIO cohort, the performance was compared with tumor proportion score (TPS) and combined positive score (CPS). The DL model showed good performance in predicting PD-L1 expression (TPS ≥ 1%) in both NSCLC-MSK and pan-cancer-VHIO cohort (AUC 0.88 ± 0.06 and 0.80 ± 0.03, respectively). The predicted PD-L1 status showed an improved association with response to ICIs [HR: 1.5 (95% confidence interval: 1–2.3), P = 0.049] compared with TPS [HR: 1.4 (0.96–2.2), P = 0.082] and CPS [HR: 1.2 (0.79–1.9), P = 0.386]. Notably, our explainability analysis showed that the model does not just look at the amount of brown pigment in the IHC slides, but also considers morphologic factors such as lymphocyte conglomerates. Overall, end-to-end weakly supervised DL shows potential for improving patient stratification for cancer immunotherapy by analyzing PD-L1 IHC, holistically integrating morphology and PD-L1 staining intensity. Significance: The weakly supervised DL model to predict PD-L1 status from raw IHC data, integrating tumor staining intensity and morphology, enables enhanced patient stratification in cancer immunotherapy compared with traditional pathologist assessment.

Funder

Bundesministerium für Gesundheit

Deutsche Krebshilfe

Bundesministerium für Bildung und Forschung

'la Caixa' Foundation

CRIS Cancer Foundation

MEC | Instituto de Salud Carlos III

NIHR | National Institute for Health and Care Research Applied Research Collaboration Oxford and Thames Valley

Fundación Fero

Prostate Cancer Foundation

PERIS

Publisher

American Association for Cancer Research (AACR)

Reference40 articles.

1. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer;Reck;N Engl J Med,2016

2. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial;Ribas;Lancet Oncol,2015

3. Pembrolizumab as second-line therapy for advanced urothelial carcinoma;Bellmunt;N Engl J Med,2017

4. Development of a companion diagnostic PD-L1 immunohistochemistry assay for pembrolizumab therapy in non–small-cell lung cancer;Roach;Appl Immunohistochem Mol Morphol,2016

5. Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: a new clinical paradigm in the treatment of triple-negative breast cancer;Cyprian;Bosn J Basic Med Sci,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3