Low Exposures to Amphibole or Serpentine Asbestos in Germline Bap1-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment

Author:

Kadariya Yuwaraj1ORCID,Sementino Eleonora1ORCID,Ruan Maggie1ORCID,Cheung Mitchell1ORCID,Hadikhani Parham23ORCID,Osmanbeyoglu Hatice U.23ORCID,Klein-Szanto Andres J.4ORCID,Cai Kathy4ORCID,Testa Joseph R.1ORCID

Affiliation:

1. 1Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.

2. 2Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.

3. 3UPMC Hillman Cancer Center, Cancer Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.

4. 4Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania.

Abstract

Abstract Asbestos and BAP1 germline mutations are risk factors for malignant mesothelioma (MM). While it is well accepted that amphibole asbestos is carcinogenic, the role of serpentine (chrysotile) asbestos in MM has been debated. To address this controversy, we assessed whether minimal exposure to chrysotile could significantly increase the incidence and rate of MM onset in germline Bap1-mutant mice. With either crocidolite or chrysotile, and at each dose tested, MMs occurred at a significantly higher rate and earlier onset time in Bap1-mutant mice than in wild-type littermates. To explore the role of gene–environment interactions in MMs from Bap1-mutant mice, we investigated proinflammatory and protumorigenic factors and the tumor immune microenvironment (TIME). IHC and immunofluorescence staining showed an increased number of macrophages in granulomatous lesions and MMs. The relative number of CD163-positive (CD163+) M2 macrophages in chrysotile-induced MMs was consistently greater than in crocidolite-induced MMs, suggesting that chrysotile induces a more profound immunosuppressive response that creates favorable conditions for evading immune surveillance. MMs from Bap1-mutant mice showed upregulation of CD39/CD73-adenosine and C-C motif chemokine ligand 2 (Ccl2)/C-C motif chemokine receptor 2 (Ccr2) pathways, which together with upregulation of IL6 and IL10, promoted an immunosuppressive TIME, partly by attracting M2 macrophages. Interrogation of published human MM RNA sequencing (RNA-seq) data implicated these same immunosuppressive pathways and connections with CD163+ M2 macrophages. These findings indicate that increased M2 macrophages, along with upregulated CD39/CD73-adenosine and Ccl2/Ccr2 pathways, contribute to an immunosuppressive TIME in chrysotile-induced MMs of Bap1-mutant mice, suggesting that immunotherapeutic strategies targeting protumorigenic immune pathways could be beneficial in human BAP1 mutation carriers who develop MM. Significance: We show that germline Bap1-mutant mice have enhanced susceptibility to MM upon minimal exposure to chrysotile asbestos, not only amphibole fibers. Chrysotile induced a more profound immune tumor response than crocidolite in Bap1-mutant mice by upregulating CD39/CD73-adenosine and Ccl2/Ccr2 pathways and recruiting more M2 macrophages, which together contributed to an immunosuppressive tumor microenvironment. Interrogation of human MM RNA-seq data revealed interconnected immunosuppressive pathways consistent with our mouse findings.

Funder

HHS | NIH | National Cancer Institute

Pennsylvania Department of Health

Commonwealth of Pennsylvania

Local #14 Mesothelioma Fund of the International Association of Heat and Frost Insulators and Allied Workers

Publisher

American Association for Cancer Research (AACR)

Reference36 articles.

1. Diffuse pleural mesotheliomas and asbestos exposure in the North Western Cape Province;Wagner;Br J Ind Med,1960

2. Asbestos-related lung disease;Attanoos;Surg Pathol Clin,2010

3. Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation;Hesterberg;Toxicol Appl Pharmacol,1998

4. Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite;Gualtieri;Environ Res,2019

5. Final risk evaluation for asbestos. Part 1: chrysotile asbestos;EPA United States Environmental Protection Agency,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3