Activator Protein-1 (AP-1) Signaling Inhibits the Growth of Ewing Sarcoma Cells in Response to DNA Replication Stress

Author:

Croushore Emma E.1ORCID,Koppenhafer Stacia L.1ORCID,Goss Kelli L.1ORCID,Geary Elizabeth L.1ORCID,Gordon David J.1ORCID

Affiliation:

1. 1Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa.

Abstract

Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in the synthesis of deoxyribonucleosides and is required for DNA replication. Multiple types of cancer, including Ewing sarcoma tumors, are sensitive to RNR inhibitors or a reduction in the levels of either the RRM1 or RRM2 subunits of RNR. However, the polypharmacology and off-target effects of RNR inhibitors have complicated the identification of the mechanisms that regulate sensitivity and resistance to this class of drugs. Consequently, we used a conditional knockout (CRISPR/Cas9) and rescue approach to target RRM1 in Ewing sarcoma cells and identified that loss of the RRM1 protein results in the upregulation of the expression of multiple members of the activator protein-1 (AP-1) transcription factor complex, including c-Jun and c-Fos, and downregulation of c-Myc. Notably, overexpression of c-Jun and c-Fos in Ewing sarcoma cells is sufficient to inhibit cell growth and downregulate the expression of the c-Myc oncogene. We also identified that the upregulation of AP-1 is mediated, in part, by SLFN11, which is a replication stress response protein that is expressed at high levels in Ewing sarcoma. In addition, small-molecule inhibitors of RNR, including gemcitabine, and histone deacetylase inhibitors, which reduce the level of the RRM1 protein, also activate AP-1 signaling and downregulate the level of c-Myc in Ewing sarcoma. Overall, these results provide novel insight into the critical pathways activated by loss of RNR activity and the mechanisms of action of inhibitors of RNR. Significance: RNR is the rate-limiting enzyme in the synthesis of deoxyribonucleotides. Although RNR is the target of multiple chemotherapy drugs, polypharmacology and off-target effects have complicated the identification of the precise mechanism of action of these drugs. In this work, using a knockout-rescue approach, we identified that inhibition of RNR upregulates AP-1 signaling and downregulates the level of c-Myc in Ewing sarcoma tumors.

Funder

HHS | NIH | National Cancer Institute

University of Iowa Dance Marathon

UI | Holden Comprehensive Cancer Center, University of Iowa

Stead Fund for Leadership Development of Innovation in Pediatric Medicine

Sammy's Superheroes Foundation

Cal's Angels

Matt Morrell and Natalie Sanchez Pediatric Cancer Research Fund

현대자동차그룹 | Hyundai Motor America | Hyundai Hope On Wheels

Publisher

American Association for Cancer Research (AACR)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3