Development of a NWP based Integrated Block Level Forecast System (IBL-FS) using statistical post-processing technique for the state Jharkhand (India)

Author:

Das Kotal Shyam1,Sharma R. S.1

Affiliation:

1. India Meteorological Department, India

Abstract

A statistical post-processing forecast system for medium range predictions using the GFS model has been developed for Jharkhand (India) with the aim of improving rainfall and temperature predictions for agricultural applications. The basis of the integrated block level forecast system (IBL-FS) build includes (i) Decaying weighted mean (DWM) bias correction technique, (ii) Value addition and (iii) Inverse distance squared weighted (IDSW) interpolation. In the first step, model bias corrected district level forecast for 24 districts of Jharkhand is generated from the output of numerical GFS model (T1534L64) by applying DWM bias correction technique. In the second step, these bias corrected forecasts are value-added using forecast from various NWP models and synoptic methods. Finally in the third step, the IDSW interpolation method is used to generate the forecast at an unmeasured block from the value-added district level forecast of the surrounding districts. The value-added forecast for 263 blocks for the state Jharkhand is prepared up to medium range time scale (120h). The performance skill of IBL-FS is evaluated for rainfall during monsoon season 2018 and 2019, for minimum temperature during winter season 2019, and for maximum temperature during summer season 2019 using different statistical metrics. The skill of IBL-FS is found to be higher than the direct model forecast (DMFC) by 15% to 43% for minimum temperature, by 18% to 41% for maximum temperature, and by 22% to 30% for rainfall forecast for day1 to day5 forecasts. This study concludes that the integrated approach is more skillful than DMFC for real time forecasts and useful for farming for the blocks of Jharkhand.

Publisher

University of Zagreb, Faculty of Science, Department of Geophysics

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3