Numerical modeling of Buongiorno’s nanofluid on free convection: thermophoresis and Brownian effects

Author:

Khatun Shatay,Nasrin Rehena

Abstract

In this research, numerical modeling is conducted on free convective flow inside a trapezoidal domain with sinusoidal material and temperature allocations at both inclined boundaries using Buongiorno’s nanofluid. The model considers thermophoresis with Brownian activity effects taking place in the flow, temperature as well as concentration contours. Non-uniform nanoparticle solid concentration and temperature allocations have been imposed at both inclined surfaces. Top and bottom parallel surfaces have been kept as adiabatic. All the walls have been considered as no-slip and impermeable. The leading equations in addition border conditions are initially converted into a dimensionless pattern by a suitable similarity transformation and then resolved arithmetically employing the finite element technique with Galerkin’s residual. Buongiorno’s model of nanofluid on thermal and material transports, and flow structure has been investigated in detail. Outcomes have been displayed in the form of velocity, temperature, and concentration contours with various governing factors like Brownian action, Lewis number, Buoyancy relation, thermophoresis, Rayleigh number, Prandtl number, etc. Also, the rate of thermal transport has been calculated. The thermophoresis and Brownian effects on velocity, heat, and material fields are identified and finally, the flow, heat, and concentration controlling parameters for a specific material and thermal transport applications inside a trapezium-shaped cavity are obtained. Result demonstrates that the increase of Brownian action guides to enhance thermal transport by 34.75 and 34.27% for the right and left walls, respectively.

Publisher

Bangladesh Journals Online (JOL)

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3