Pooled Mapping of QTLs Associated With Salt Tolerance Traits at Seedling Stage in Rice

Author:

Wu Yingbao,Zhang Gaoyang,Zhang Chao,Tang Weiqi,Wang Ting,Zhang Huining,Wu Hongkai

Abstract

Salt stress has been identified as a vital limiting factor affecting rice output across the world. In rice, the salt tolerance nature is complicated, since it is dependent on different components and is lowly heritable. Consequently, it is a key method to breed salt-tolerant varieties for improving rice output upon salt stress. To investigate the genetic foundation for salt stress tolerance of rice seedlings (Oryza sativa L.), bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) was performed in QTL mapping on the huge F2 population including totally 2,500 plants obtained through crossing the indica rice variety 1892S with the japonica rice variety Huaidao 5 (HD5). In BSA-seq, only extremely-sensitive (ES) and extremely-tolerant (ET) seedlings were utilized, making it not difficult for identification with no requirement of quantitative analysis. Therefore, the seedling survival state was an appropriate indicator trait in BSA-seq. HD5 in seedling stage exhibited enhanced tolerance to extended salt stress when compared with 1892S. The DNA pools prepared based on 235 ES together with 165 ET seedlings of F2 population through block regression mapping (BRM) were analyzed, and a QTL was mapped onto chromosome 3 and termed QTL qSLST3.1. There were numerous rice salt tolerance-associated QTLs on chromosome 3 in seedling stage, but just one was situated in the confidence interval of qSLST3.1. These QTLs did not have identical positions. So qSLST3.1 should be the new QTL. Moreover, our results can shed more lights on marker-assisted salt-resistant variety breeding and positional cloning of rice salt tolerance trait-related genes. Bangladesh J. Bot. 53(2): 405-410, 2024 (June)

Publisher

Bangladesh Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3