Ni-Cu-Zn Ferrite Research: A Brief Review

Author:

Huq M. F.,Saha D. K.,Ahmed R.,Mahmood Z. H.

Abstract

The temperature at which the ferrite is sintered critically depends on the chemical composition. The electromagnetic properties are dependent on the densification and microstructure. Substitutions and addition of sintering aids is an attractive approach to enhance the electromagnetic properties. Various compositions in the system Ni1-x-yCuxZnyFe2O4 were investigated. Cu is used to decrease the sintering temperature. However, Cu decreases the resistivity, which is not desirable for its high frequency applications. So, optimization of Cu content is necessary. Different ranges of electromagnetic properties have been reported with various Zn concentrations. Optimization of Zn concentration with respect to Ni and Cu is essential to achieve desirable electromagnetic properties. Influence of rare earths has also been reported. The investigations showed an improved densification in Ni-Zn and increased permeability in Cu-Zn ferrite by Sm substitution. La substitutions showed an improved resistivity in Ni-Zn ferrites. Similarly, these substitutions may improve the electromagnetic properties in Ni-Cu-Zn ferrites. V2O5, MoO3 and Bi2O3 were reported to be the most widely used sintering additives. Bi2O3-WO3 and V2O5-MoO3 mixed additives were better than the individual additives in Ni-Cu-Zn ferrite, respectively. Further research is needed on the mixed sintering additivesKeywords: Additives; Ferrite preparation; Ni-Cu-Zn ferrite; Rare Earth; Sintering aids.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i2.12434 J. Sci. Res. 5 (2), 215-233 (2013)

Publisher

Bangladesh Journals Online (JOL)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3